B.A./B.Sc. 1st Semester (Honours) Examination, 2019 (CBCS)

Subject: Mathematics

Paper: BMHI-CC-II (Algebra)

Time: 3 Hours Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

Notations and Symbols have their usual meaning.

Group-A

1. Answer any ten questions from the following:

 $2 \times 10 = 20$

- (a) Transform $x^3 6x^2 + 5x + 12 = 0$ into a equation lacking the second degree term.
- (b) If a, b, c be all real numbers, prove that $a^2 + b^2 + c^2 \ge ab + bc + ca$.
- (c) If $a^n 1$ is prime number for some positive integer n, prove that a = 2.
- (d) Find argz, where $z = 1 + \cos 2\theta + i \sin 2\theta$, $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$.
- (e) Let $A = \left\{ x \in \mathbb{R} \mid x \neq \frac{1}{2} \right\}$ and define $f : A \to \mathbb{R}$ by $f(x) = \frac{4x}{2x-1} \ \forall \ x \in A$. Is f one to one? Justify your answer.
- (f) Given three consecutive integers a, a + 1, a + 2. Prove that exactly one of them is divisible by 3.
- (g) Give an example of a function $f: \mathbb{N} \to \mathbb{N}$ which is one to one but not onto. Justification needed.
- (h) Let $\rho = \{(a,b) \mid a,b \in \mathbb{N}, \frac{a}{b} \text{ is an integer}\}$ be a binary relation on \mathbb{N} . Is ρ equivalence relation? Justify your answer.
- (i) Let ρ denote an equivalence relation on set A. Let $a \in A$, prove that for any $x \in A$, $x \rho a$ iff cl(x) = cl(a).
- (j) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, then show that T is one to one if and only if the equation T(x) = 0 has only the trivial solution.
- (k) What is the Geometric object corresponding to smallest subspace V_o containing a non-zero vector u = (x, y) in \mathbb{R}^2 ? Justify your answer.

16361

Please Turn Over

ASH-I/BMHI/CC-II/19

(2)

- (1) Prove that $(n+1)^n \ge 2^n$. $\lfloor \underline{n} \rfloor$, where n is any positive integer.
- (m) Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -2 & 5 \\ 0 & 0 & 2 \end{pmatrix}$. Find the eigenvalues of the matrix $A^5 I_3$.
- (n) Find all values of k such that the set $S = \{(k, 1, k), (0, k, 1), (1, 1, 1)\}$ form a basis of \mathbb{R}^3 . (Give reasons).
- (o) Prove that there are infinitely many primes of form 4q + 3, $q \in \mathbb{Z}$.

Group-B

2. Answer any four questions from the following:

5×4=20

- (a) (i) Prove that $\arg z \arg(-z) = \pm \pi$ according to $\arg z > 0$ or $\arg z < 0$.
 - (ii) If a and b are relatively prime integers, prove that gcd(a+b,a-b)=1 or 2. 3+2=5
- (b) (i) For (x, y) and (u, v) in \mathbb{R}^2 , define $(x, y) \rho(u, v)$ if and only if $x^2 + y^2 = u^2 + v^2$. Prove that ρ is an equivalence relation on \mathbb{R}^2 and interpret the equivalence classes geometrically.
 - (ii) Suppose a and b are integers and $3|(a^2+b^2)$, show that 3|a and 3|b. 3+2=5
- (c) (i) If n is a positive integer, prove that $\left(1 + \frac{1}{n}\right)^{n+1} > \left(1 + \frac{1}{n+1}\right)^{n+2}$.
 - (ii) If $k \in \mathbb{N}$, Prove that gcd(3k + 2, 5k + 3) = 1. 3+2=5
- (d) (i) By using Sturm's method, find the positions of the real roots of the equation $x^4 2x^3 + 7x^2 + 10x + 10 = 0.$
 - (ii) Find the number of reflexive relations on a set of 3 elements. 3+2=10
- (e) (i) Suppose λ is an eigenvalue of a real symmetric matrix A. Prove that $\left|\frac{1-\lambda}{1+\lambda}\right| = 1$.
 - (ii) Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T^2(\alpha) = -\alpha$. 3+2=5
- (f) (i) Let $V = \mathbb{R}^n$ and A be a $n \times n$ natrix. If AX = 0 has a unique solution, prove that AX = b has a unique solution for every $b \in \mathbb{R}^n$.
 - (ii) Prove that for all integers n > 1, $n^4 + 4$ is composite. 3+2=5

Group-C

3. Answer any two questions from the following:

 $10 \times 2 = 20$

- (a) (i) State and prove De Moivre's theorem.
 - (ii) Find the eigenvalues and eigenvectors of the matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$. 5+5=10

(b) (i) Solve the system of equations.

$$x - 2y + z - t = 0$$

$$x + y - 2z + 3t = 0$$

$$4x + y - 5z + 8t = 0$$

$$5x - 7y + 2z - t = 0$$

- (ii) If u and v are two integers and v > 0, prove that there exist two unique integers s and t such that u = sv + t with $0 \le t < v$.
- (iii) Find the equation whose roots are $\beta \gamma + \frac{1}{\alpha}$, $\gamma \alpha + \frac{1}{\beta}$, $\alpha \beta + \frac{1}{\gamma}$ where α, β, γ are the roots of $x^3 px^2 + qx r = 0$.
- (c) (i) Prove that the square of an odd integer is of the form 8k + 1, where k is an integer.
 - (ii) Solve the equation: $x^4 9x^3 + 28x^2 38x + 24 = 0$.
 - (iii) Find the range space, null space, rank of T and nullity of the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ defined by T(x, y, z, t) = (x y + z + t, x + 2z t, x + y + 3z 3t).

- (d) (i) Prove that eigenvalues of a real symmetric matrix are real.
 - (ii) Show that $x^n 1 = (x 1) \prod_{k=1}^{\frac{1}{2}(n-1)} (x^2 2x \cos \frac{2k\pi}{n} + 1)$,

where n is an odd integer.

(iii) Let $T: V \to W$ be a linear transformation. Prove that T is 1-1 if and only if it maps any linearly independent set of V to a linearly independent set of W. 3+4+3=10