B.A./B.Sc 4th Semester (Honours) Examination, 2019 (CBCS)

Subject: Mathematics

Paper: BMH4 CC10

(Ring Theory and Linear Algebra I)

Time: 3 Hours Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[Notations and Symbols have their usual meaning.]

Group-A

Marks: 20

1. Answer any ten questions:

 $2 \times 10 = 20$

- (a) Show that a ring R is commutative if $x^3 = x$ for all $x \in R$.
- (b) What are ideals of a field? Justify your answer.
- (c) Suppose R is the ring of all real valued continuous functions defined on the closed interval [0, 1] and let $S = \{ f \in R : f\left(\frac{1}{2}\right) = 0 \}$. Then S is an ideal of R. Justify.
- (d) The ring $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is a field. Justify.
- (e) Suppose F is a field with 2^n elements, where $n \in N$. Find the characteristic of F.
- (f) Define a homomorphism from the ring \mathbb{Z} of integers into the ring \mathbb{Z}_5 of integers module 5.
- (g) Give an example to show that a quotient ring of an integral domain may not be a field.
- (h) Let R be a commutative ring of characteristic 2. Define a map $\varphi: R \to R$ by $\varphi(a) = a^2 \ \forall \ a \in R$. Prove that φ is a ring homomorphism.
- (i) Is (0, 0, 1) a linear combination of (1, 0, 1) and (0, 1, 1)? Justify your answer.
- (j) If $S = \{(1,0,0), (0,1,0)\}$, describe geometrically the linear span of S in the real vector space \mathbb{R}^3 .
- (k) Is the union of two subspaces of a vector space V a subspace of V? Justify your answer.
- (1) Let V be a finite dimensional vector space and W be a subspace of V. What is the relation among dim $V/_W$, dim V and dim W?

Please Turn Over

(2) ASH-IV/Mathematics/BMH4CC10/19

- (m) Is the map $T(x, y) = (x, y + 3), \forall x, y \in \mathbb{R}$ a linear transformation from the real vector space \mathbb{R}^2 into itself? Justify your answer.
- (n) State the rank-nullity theorem for vector spaces.
- (o) It is given that the map $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x, y) = (x, x + y, y) \forall x, y \in \mathbb{R}$ is a linear transformation from the real vector space \mathbb{R}^2 to the real vector space \mathbb{R}^3 . Find ker T.

Group-B

Marks: 20

2. Answer any four questions:

5×4=20

- (a) (i) Let $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}$. Prove that $\mathbb{Z}[2]$ is a ring under the usual addition and multiplication of real numbers.
 - (ii) Let R be a ring and α be a fixed element of R. Show that $I_{\alpha} = \{x \in R \mid \alpha x = 0\}$ is a subring of R.
- (i) Let n be a positive integer. Prove that $n\mathbb{Z}$ is a prime ideal of the ring \mathbb{Z} of integers if and only if n is prime.
 - (ii) Let R be a ring with unity 1. Prove that R has characteristic $n(\neq 0)$ if and only if n is the smallest positive integer such that n. 1 = 0.
- (i) Let φ be a homomorphism from a ring R onto a ring S. If I is an ideal of R, prove that (c) $\varphi(I)$ is an ideal of S.
 - (ii) State the third isomorphism theorem for rings.

3+2=5

- (d) Let U and W be subspaces of a vector space V over a field F. Prove that
 - (i) $U + W = \{u + w \mid u \in U, w \in W\}$ is a subspace of V.
 - (ii) U + W is the smallest subspace of V containing U and W.

3+2=5

- (i) Find a basis for the real vector space \mathbb{R}^3 that contains the vectors (1, 2, 1) and (3, 6, 2).
 - (ii) It is given that $W = \{(x, y, z) \mid x, y, z \in \mathbb{R}, 2x + y z = 0\}$ is a subspace of the real vector space \mathbb{R}^3 . Find the dimension of W.
- (i) Let U and V be two finite dimensional vector spaces over the same field F such that dim $U = \dim V$. Show that U and V are isomorphic vector spaces.
 - (ii) It is given that the map $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x,y) = (x+y, x-y) \ \forall \ x,y \in \mathbb{R}$ is a linear transformation from the real vector space \mathbb{R}^2 into itself. Find dim(ImT).

Group-C

(3)

Marks: 20

3. Answer any two questions:

10×2=20

- (a) (i) Let $M_{2\times 2}(\mathbb{Z})$ be the ring of all 2×2 matrices over the integers and let $R = \left\{ \begin{pmatrix} a & a-b \\ a-b & b \end{pmatrix} \middle| a,b \in \mathbb{Z} \right\}$. Prove or disprove that R is a subring of $M_{2\times 2}(\mathbb{Z})$.
 - (ii) Prove that a finite integral domain is a field.
 - (iii) Let $\mathbb{R}[x]$ be the ring of polynomials in x with real coefficients and $(x^2 + 1)$ be the principal ideal of $\mathbb{R}[x]$ generated by $x^2 + 1$. Prove that $(x^2 + 1)$ is a maximal ideal of $\mathbb{R}[x]$.
- (b) (i) Let R be a commutative ring with unity and A be an ideal of R. Prove that R/A is a field if and only if A is maximal.
 - (ii) State and prove the first isomorphism theorem for rings.

5+5=10

- (c) (i) Let $S = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a + b = 0, \ a, b, c, d \in \mathbb{R} \right\}$. Prove that S is a subspace of the vector space $M_{2\times 2}(\mathbb{R})$ of all 2×2 real matrices. Find the dimension of S.
 - (ii) Show that the set of vectors $S = \{(1,2,0), (2,1,3), (1,1,1), (2,3,1)\}$ of vectors is linearly dependent in the real vector space \mathbb{R}^3 . Find a linearly independent subset T of S such that L(T) = L(S). (L(A) denotes the linear span of A)
 - (iii) It is given that $U = \{(x, y, z) \in \mathbb{R}^3 | x + 2y = z\}$ and $W = \{(x, y, z) \in \mathbb{R}^3 | 2x + 2z = y\}$ are subspaces of the real vector space \mathbb{R}^3 . Find a basis for the subspace $U \cap W$. 5+3+2=10

be a system of m linear homogenous equations with real coefficients in n variables, where n > m. Using Rank-nullity theorem show that the system has a non-trivial solution.

- (ii) Let V be a vector space with a basis $\{e^{3t}, te^{3t}, t^2e^{3t}\}$ over the field of real numbers. $D: V \to V$ be defined by $D(f(t)) = \frac{d}{dt}f(t) \ \forall \ f(t) \in V$. Find the matrix of D in the given basis.
- (iii) Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T^2(\alpha) = \alpha \ \forall \ \alpha \in \mathbb{R}^2$.