B.A./B.Sc 4th Semester (Honours) Examination, 2019 (CBCS)

Subject: Mathematics

Paper: BMH4 CC09

(Multivariate Calculus)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

[Notations and Symbols have their usual meaning.]

Group-A

Marks: 20

1. Answer any ten questions:

 $2 \times 10 = 20$

- (a) Let $f(x,y) = \frac{xy}{x^2 + y^2}$, for $(x,y) \neq (0,0)$ and f(0,0) = 0. Find $f_x(0,0)$ and $f_y(0,0)$ and examine for continuity of f at (0,0).
- (b) Prove that if a function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point $\xi = (x_1, x_2, \dots, x_n)$ then it is continuous there.
- (c) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \sin x, \forall (x, y) \in \mathbb{R}^2$. Find f'(1, 2), where f'(1, 2) is the derivative of f at (1, 2).
- (d) Find the directional derivative of $f(x, y, z) = xy^2 5xz + 7y$ at (1, 0, -1) in the direction $\vec{u} = \frac{1}{\sqrt{3}}(1, 1, -1)$.
- (e) Find the equation of the tangent plane and normal line of the surface $z = x^2 + y^2$ at the point (3, 4, 25).
- (f) Evaluate $\iint_R (x^2 + y^2) dx dy$, where R is the region bounded by the straight lines x = 0, y = 1 and the parabola $y = x^2$.
- (g) Evaluate: $\int_0^{\frac{\pi}{2}} dx \int_0^{\cos x} x^2 dy$
- (h) Evaluate: $\int_0^1 dx \int_0^y \sqrt{x^2 + y^2} dy$ by transforming to polar coordinates
- (i) Evaluate: $I = \iiint_V (xy^2z^3)^2 dxdydz$ over the rectangular parallelopiped V bounded by the planes $x = \pm a$, $y = \pm b$, $z = \pm c$.
- (j) Show that if $\phi(x, y, z)$ is any solution of Laplace's equation then $\overrightarrow{\nabla} \phi$ is a vector which is both solenoidal and irrotational.

Please Turn Over

ASH-IV/Mathematics/BMH4CC09/19

(k) If $\vec{F}(x, y, z) = xy\hat{\imath} - z\hat{\jmath} + x^2\hat{k}$ and C is the curve $x = t^2$, y = 2t, $z = t^3$ from t = 0 to t = 1, evaluate the line integral $\int_C \vec{F} \times d\vec{r}$.

(2)

- (1) Find the total work done in moving a particle in a force field given by $\vec{F} = 3xy\hat{\imath} 5z\hat{\jmath} + 10x\hat{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.
- (m) Evaluate : $\iint_S \vec{A} \cdot \hat{n} \, ds$ where $\vec{A} = y\hat{i} + 2x\hat{j} z\hat{k}$ and S is the surface of the plane 2x + y = 6 in the first octant cut off by the plane z = 4.
- (n) Use Green's Theorem to find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (o) If the vectors \vec{A} and \vec{B} be irrotational then show that the vector $\vec{A} \times \vec{B}$ is solenoidal.

Group-B

Marks: 20

2. Answer any four questions from the following:

 $5 \times 4 = 20$

- (a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(0,0) = 0 and $f(x,y) = \frac{x^2y}{x^4 + y^2}$ if $(x,y) \neq (0,0)$. Show that all directional derivatives of f exist at (0,0), but f is not differentiable at (0,0).
- (b) (i) if $x = r\sin\theta\cos\phi$, $y = r\sin\theta\sin\phi$ and $z = r\cos\theta$ then prove that $\frac{\partial x}{\partial r} \cdot \frac{\partial r}{\partial x} + \frac{\partial x}{\partial \theta} \cdot \frac{\partial \theta}{\partial x} + \frac{\partial x}{\partial \phi} \cdot \frac{\partial \phi}{\partial x} = 1.$
 - (ii) Let z be a differentiable function of x and y and let $x = r\cos\theta$, $y = r\sin\theta$. Prove that $\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2.$ 3+2=5
- (c) (i) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \frac{xy}{(x^2 + y^2)^2}$, for $(x, y) \neq (0, 0)$ = 0, for (x, y) = (0, 0)

Show that the repeated integrals of f over $E = \{(x, y): -1 \le x \le 1, -1 \le y \le 1\}$ exist and are equal but $\iint_E f(x, y) dx dy$ does not exist.

- (ii) Evaluate: $\int_0^\pi \int_x^\pi \frac{\sin y}{y} dy dx.$ 3+2=5
- (d) (i) Let $u = f(x, y) = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, prove that $x^2 f_{xx} + 2xy f_{xy} + y^2 f_{yy} = -\frac{\sin u \cos 2u}{4 \cos^3 u}$.
 - (ii) Evaluate : $\iint_Q [x+y]dx dy$, where $Q = [0,2] \times [0,2]$ and [x] is the greatest integer $\leq x$. 3+2=5
- (e) Prove that $\vec{F} = (2xy + z^3)\hat{\imath} + x^2\hat{\jmath} + 3xz^2\hat{k}$ is a conservative force field. Find the scalar potential V such that $\vec{F} = \vec{\nabla}V$. Also find the work done in moving an object in this field from (1, -2, 1) to (3, 1, 4).

- (f) (i) Verify Green's theorem in the plane for $\oint_C (3x^2 8y^2)dx + (4y 6xy)dy$, where C is the boundary of the region defined by $y = \sqrt{x}$, $y = x^2$.
 - (ii) If S is any closed surface enclosing a volume V and $\vec{A} = ax\hat{\imath} + by\hat{\jmath} + cz\hat{k}$, prove that $\iint_{S} \vec{A} \cdot \hat{n} \, ds = (a+b+c)V.$ 3+2=5

Group-C

Marks: 20

3. Answer any two questions from the following:

 $10 \times 2 = 20$

- (a) (i) Let $S \subset \mathbb{R}^n$ be an open ball and let $f: S \to \mathbb{R}$ has partial derivatives f_{x_1}, \dots, f_{x_n} at each point of S. If f_{x_1}, \dots, f_{x_n} are continuous at a point $\xi \in S$, then prove that f is differentiable at ξ .
 - (ii) If $ux = vy = wz = x^2 + y^2 + z^2$ then show that $\frac{\partial (u,v,w)}{\partial (x,y,z)} = \frac{(x^2 + y^2 + z^2)^3}{x^2 y^2 z^2}$, where left hand side of the above relation represents the Jacobian of the functions u, v, w w.r.t. x, y, z.
 - (iii) Examine for extreme values of $f(x, y) = x^3y^3(12 3x 4y)$ 5+3+2=10
- (b) (i) Find the volume of the solid in the first octant bounded by the cylinder $x = 4 y^2$ and the planes z = y, x = 0, z = 0.
 - (ii) Show that $\int_0^1 dx \int_0^{1-x} e^{\frac{y}{x+y}} dy = \frac{e-1}{2}$.
 - (iii) State Schwarz's theorem and show that the function $f(x,y) = \frac{xy(x^2-y^2)}{x^2+y^2}$, for $(x,y) \neq (0,0)$, f(0,0) = 0 does not satisfy its hypothesis.
- (c) (i) Find the circulation of \vec{F} round the curve C where

$$\vec{F} = (2x - y + 4z)\hat{i} + (x + y - z^2)\hat{j} + (3x - 2y + 4z^3)\hat{k}$$
 and C is the circle $x^2 + y^2 = 9$, $z = 0$

- (ii) Verify the divergence theorem for $\vec{A} = 2x^2y\hat{\imath} y^2\hat{\jmath} + 4xz^2\hat{k}$ taken over the region in the first octant bounded by $y^2 + z^2 = 9$ and x = 2.
- (iii) Verify Stoke's theorem for $\vec{F} = xz\hat{\imath} y\hat{\jmath} + x^2y\hat{k}$ taken over the surface S of the region bounded by

$$x = 0$$
, $y = 0$, $z = 0$, $2x + y + 2z = 8$

which is not included in the xz-plane.

3+3+4=10

- (i) Find the maximum value of $(xyz)^2$ subject to the condition $x^2 + y^2 + z^2 = 1$ using the method of Lagrange multipliers.
 - (ii) Evaluate : $\iiint_E \sqrt{a^2b^2c^2 b^2c^2x^2 c^2a^2y^2 a^2b^2z^2} \, dx \, dy \, dz \text{ where } E \text{ is the}$ 5+5=10 region bounded by the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.