B.Sc. 4th Semester (Honours) Examination, 2022 (CBCS) Subject: Inorganic Chemistry Paper: CC-9

Time- 2 Hours

Full Marks: 40

 $5 \ge 2 = 10$

(Candidates are required to give their answers in their own words as far as practicable)

- **1.** Answer *any five* questions from the following:
- (a) Indicate the coordination number of the following metal complexes: i. $[Fe(\eta^5-C_5H_5)_2]$, ii. $K_2[Pt(\eta^2-C_2H_4)Cl_3]$, iii. $[Ir(CO)Cl(PPh_3)_2(O_2)]$, iv. $[Ru(CO)(NH_3)_2(PPh_3)_2Cl]$
- (b) Give one suitable example of each of the following: i. Trans-chelating ligand, ii. Pentadentate ligand.
- (c) Write down with proper structure of a square planar complex compound which shows optical isomerism.
- (d) Write the IUPAC nomenclature of following metal-complexes
- i. [Cl₂(NH₃)₂Co(OH)₂Co(NH₃)₂Cl₂], ii. [Pt(NH₃)(CO)(Cl)(NO₃)]
- (e) Give examples of the ores of following elements: i. Nickel, ii. Lead
- (f) What is Clathrate compound? Give its example.
- (g) " π -complexing ligand is essentially a π -acidic ligand but the reverse is not true."-Justify.
- (h) Write down the main points to distinguish the term allotropy and catenation.

2. Ansv	wer any two	questions	from the following	s:	2x5 = 10
---------	-------------	-----------	--------------------	----	----------

- (a) Explain with proper reason:
- i. (CH₃)₂CO is a volatile liquid while (CH₃)₂SiO is not.
- ii. $(CH_3)_3$ SiOH is a stronger acid than its carbon analog. 2x2.5=5

(b) Write brief explanatory notes of the following compounds, based on their synthesis, structure and applications: i. Borazine, ii. Silicones. 2x2.5=5

(c) Predict the sites of SCN⁻ ligand suitable for complexing with Fe^{3+} and Ag^+ , respectively. -Justify your answer. 2x2.5=5

(d) What do you mean by chelate effect? Why it is called entropy effect? 2+1+2=5

- **3.** Answer *any two* questions of the followings:
- (a) i. Outline a definite structure from the VSEPR theory of the following compounds: XeF₄O₂, XeF₆ and XeO₂F₂.
- ii. Give the actual bonding nature by using M.O. diagram of the following Xenon compounds: XeF_2 and XeF_4 . 3x2+4=10
- (b) Suggest preparatory method and draw the structures of the followings:
 - i. Caro's acid, ii. Potassium bi-iodate, iii. Hyponitrous acid, iv. Hydrazine. 4x2.5=10
- (c) Explain the following observations:
- i. PCl₃ and SbCl₃ behave differently with water.
- ii. Molecular N₂ is isoelectronic with CO but CO is better ligand than N₂.
- iii. NaN₃ is more stable than HN₃.
- iv. SF₆ can exist but SH₆ or SCl₆ do not.
- v. Neither BrF₅ nor AsF₅ are good conductors of electricity but a mixture of two makes a good conductor. 5x2=10
- (d) Answer the following:
 - i. Compare the halides and pseudo halides.
 - ii. Point out the actual reason about the increase in acidic property of boric acid in presence of glycerol.
 - iii. Iodine is soluble in water in presence of KI salt among all the halogens.-Justify with proper reason.
 - iv. Give two important uses of sulphur-nitrogen compound.

3+2+3+2=10

2x10=20