B.A./B.Sc. 4th Semester (Honours) Examination, 2022 (CBCS) **Subject: Mathematics Course: BMH4CC10** (Ring Theory & Linear Algebra-1)

Time: 3 Hours

Time. 5 Ho	ouis ruii Marks. 00			
	The figures in the margin indicate full marks.			
Candidates are required to write their answers in their own words as far as practicable.				
	[Notation and Symbols have their usual meaning]			
1. Answ	er any ten questions:	$0 \times 2 = 20$		
(a)	Does there exists a ring in which the equation $x^2 = x$ has infinitely many solutions			
	Justify your answer.			
(b)	Give an example of a finite non-commutative ring? Justify your answer.	[2]		
(c)	Does $(P(X), \cap, \cup)$ form a ring? where $P(X)$ is the power set of the set X.	[2]		
(d)	In the ring \mathbb{Z}_n , show that an element 'a' is a unit if and only if $gcd(a, n) = 1$.	[2]		
(e)	Find out the units in the ring of Gaussian integers $\mathbb{Z}[i]$.	[2]		
(f)	Is the mapping $\varphi: \mathbb{Z}_5 \to \mathbb{Z}_{30}$, defined by $\varphi(x) = 6x, \forall x \in \mathbb{Z}_5$, a ring homomorphism	? [2]		
	Justify your answer.			
(g)	Is the ring $2\mathbb{Z}$ isomorphic to the ring $4\mathbb{Z}$? Justify your answer.	[2]		
(h)	Does there exist an integral domain having exactly 6 elements? Justify your answer.	[2]		
(i)	In \mathbb{R}^3 , let $v_1 = (2,3,-1)$ and $v_2 = (1,-1,4)$. Examine if $u = (3,7,-6)$ is a linea	r [2]		
	combination of v_1 and v_2 .			
(j)	Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be a surjective linear map. Show that kernel of T is the singleton.	[2]		
(k)	Does there exist a linear map $T : \mathbb{R}^4 \to \mathbb{R}^4$ whose null space equals with its range?	[2]		
(1)	Is the dimension of \mathbb{R} over the field of rationals \mathbb{Q} finite ? Justify your answer.	[2]		
(m)	Suppose $V = \{ f \in C[0,1] : f \text{ is twice differentiable over}[0,1] \text{ such that } \frac{d^2 f}{dt^2} = 0 \}$	[2]		
	Then what is the dimesion of the subspace V.	•		
	Then what is the dimesion of the subspace V.			
(0)	Let V be a vector space over a field F and $v_1, v_2, v_3 \in V$. Suppose that the linear span	s [2]		
	of the sets $\{v_1, v_2\}$ and $\{v_1, v_2, v_3\}$ are the same. What can you say about the vectors	8		
	<i>v</i> ₁ , <i>v</i> ₂ , <i>v</i> ₃ ?			
2. Answer any four questions: $4 \times 5 =$				
(a)	Find all the solution of the equation $x^2 - 5x + 6 = 0$ in the ring \mathbb{Z}_{14} .	[5]		
(b) (i)	Is $\mathbb{R}[x]/\langle x \rangle \cong \mathbb{R}$? Support your answer.	[2]		

- Is $\mathbb{Z} \times \mathbb{Z}$ an integral domain? Whether the quotient of $\mathbb{Z} \times \mathbb{Z}$ by the ideal $\{0\} \times \mathbb{Z}$ (ii) [3] will be an integral domain? Support your answer.
- How many non-trivial ideals does the ring $M_{2\times 2}(\mathbb{R})$ have ? What would be the case if (c) (i) [3]

Full Marks: 60

we consider integer entries instead of real entries? Support your answer

- (ii) For any two ideals I and J of a ring R, show that I+J will be the smallest ideal in R [2] containing both I and J.
- (d) (i) Find a basis of the subspace of \mathbb{R}^3 generated by the vectors (1,0,-1), (1,2,1), (0,-3, 2) [2]
 - (ii) Can you construct a basis of \mathbb{R}^4 containing the vectors (2,1,4,3) and (2,1,2,0)? [3]
- (e) (i) Let V, W be two vector spaces over the field F. Let B = {e₁, e₂, ..., e_n} be an ordered [3] basis of V and B' = {f₁, f₂, ..., f_n} be an ordered basis of W. Can you define a unique linear map T : V → W such that T(e_k)=(f_k), ∀ k ∈ {1,2, ..., n}. Will it be a linear isomorphism? Justify your answer.
 - (ii) Suppose W be a subspace of \mathbb{R}^3 generated by (1,0,0) and (1,1,0). Can you write down [2] a typical element of the quotient space \mathbb{R}^3/W ? Also find a basis of \mathbb{R}^3/W .
- (f) (i) Show that the matrices $\begin{pmatrix} \cos\varphi & -\sin\varphi\\ \sin\varphi & \cos\varphi \end{pmatrix}$ and $\begin{pmatrix} e^{i\varphi} & 0\\ 0 & e^{i\varphi} \end{pmatrix}$ are similar over \mathbb{C} . [2]
 - (ii) Let L be a line passing through the origin in R². We consider a unit vector f₁ along L [3] and f₂ is any vector perpendicular to f₁. Find the matrix representation of the linear map T: R² → R² such that T(f₁)=f₁ and T(f₂)=-f₂ with respect to the standard basis of R².

3. Answer any two questions:			2×10 = 20
(a)	(i)	Consider the ring $\mathbb{Z}[x]$ of polynomials with integer coefficients.	[3]
		Let $I = \{f(x) \in \mathbb{Z}[x] : f(0) = 0\}$. Prove that $I = \langle x \rangle$, the principal ideal generated by <i>x</i> .	
	(ii)	State and prove Euler's theorem. Also find out the remainder of 8^{103} when divided by 13.	[3+2]
	(iii)	What is the characteristic of a Boolean ring ? Support your answer.	[2]
(b)	(i)	Find all ideals of $(\mathbb{Z}_{10}, +, .)$.	[2]
	(ii)	Determine all the ring homomorphisms of $\mathbb Z$ into $\mathbb Z$.	[4]
	(iii)	State and prove second isomorphism theorem for rings.	[4]
(c)	(i)	Is $\mathbb{Z}[x]$ isomorphic to $\mathbb{R}[x]$? Justify your answer.	[2]
	(ii)	Show that the ideal $< 2, x > in \mathbb{Z}[x]$ will not be a principal ideal.	[4]
	(iii)	Prove that $\mathbb{R}[x]/\langle x^2+1\rangle \cong \mathbb{C}$.	[4]
(d)	(i)	Let us consider the ring $R = \{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbb{R} \}$. Show that $I = \{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in \mathbb{R} \}$	[3]

is a maximal ideal in R.

(ii) Determine the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basis vectors [3+2+2] (1,0,0), (0,1,0), (0,0,1) of \mathbb{R}^3 respectively to the vectors (0,1,0), (0,0,1), (1,0,0). Find *KerT* and *ImT*.