B.A./ B. Sc 4th Semester (Honours) Examination, 2022 (CBCS) **Subject: Mathematics Course: BMH4CC08** (Riemann Integration and Series of Functions)

Time: 3 Hours

1

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any ten questions:

$$10 \times 2 = 20$$

 (a) Define $f: [0,1] \to \mathbb{Z}$ by $f(x) = [3x]$. Examine whether f is R-integrable. Evaluate
 $[2]$
 $\int_0^1 f(x) dx$, if it exists.
 [2]

 (b) Let f be continuous on $[a, b]$ and let $\int_a^b f(x) dx = 0$. Show that the set $\{x \in [a, b]: f(x) = [2], 0\}$ is non-empty.
 [2]

 (c) Let $\phi(t) = \int_0^t te^{i \pi t} dt$, $t \in [0, \pi]$. Find $\phi^n(t)$, if exists.
 [2]

 (d) Define $f: [0, \pi] \to \mathbb{R}$ by $f(x) = \sin x$. Find $Sup \{|f(a) - f(b)|: a, b \in [0, \pi]\}$.
 [2]

 (e) Find $B(m, 1)$ for $m > 0$.
 [2]

 (f) Test the convergence of $\int_{5}^{\infty} \frac{dx}{x^n}$.
 [2]

 (g) Show that $\int_{3}^{\infty} \frac{dx}{x \log x}$ diverges.
 [2]

 (i) Let $\{f_n\}$ be any sequence of functions on $[a,b]$. Is $\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx$? Give reason.
 [2]

 (ii) Examine the pointwise convergence of $\sum_{n=1}^{\infty} e^{nx} \sin nx$.
 [2]

 (j) Examine the series $\sum_{n=0}^{\infty} (2^n + 3^n)x^n$, with its range of validity.
 [2]

 (iii) Is the series $\sum_{n=1}^{\infty} (2^n + 3^n)x^n$, with its range of validity.
 [2]

 (iii) If $\sum_{n=0}^{\infty} a_n x^n$ converges for all real numbers x , then find $\lim_{n \to \infty} Sup |a_n|^{\frac{1}{n}}$.
 [2]

(n) Find the interval of convergence of the series
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
. [2]

(o) Find the radius of convergence of
$$\sum_{n=0}^{\infty} 2^n x^{2n}$$
. [2]

2. Answer any four questions:

(b)

(a) (i)
Let f be continuous on
$$[a,b]$$
 such that $f(x) \ge 0, \forall x \in [a,b]$. If $\int_{a}^{b} f(x)dx = 0$, [3]

prove that $f(x) = 0, \forall x \in [a, b].$

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx$$
. Show that there is a $c \in [a,b]$ such that $f(c) = g(c)$.
Define $f: [0,1] \to \mathbb{R}$ by [2]

(ii) Define
$$f: [0,1] \to \mathbb{R}$$
 by [2]
$$f(x) = \frac{1}{a^n}, \text{ if } \frac{1}{a^n} < x \le \frac{1}{a^{n-1}}, n \in \mathbb{N}, a > 1$$

Examine whether f is R-integrable.

=0, if x = 0.

(c) Let
$$x \in (-1, 1]$$
. Show that $\int_{0}^{x} \frac{t^{m}}{t+1} dt \to 0$ as $m \to \infty$. [5]

(d) A function f is defined on [0,1] by
$$f(0) = 0$$
 and
 $f(x) = (-1)^{n+1}(n+1)$ for $\frac{1}{2} < x < \frac{1}{2} : n - 1 \ge 3$

Examine the convergence of
$$\int_{0}^{1} f(x) dx$$
 and $\int_{0}^{1} |f(x)| dx$.

(e) Show that the sequence of functions $\{f_n\}$ defined by

$$f_n(x) = \frac{nx}{1+nx}, x \ge 0$$
 is not uniformly convergent on $[0, \infty)$.

Examine the uniform convergence of $\{f_n\}$ on $[a,\infty)$ if a > 0.

(f) If
$$f(x) = {\pi - |x|}^2$$
 on $[-\pi, \pi]$, prove that Fourier Series of f is given by [5]

$$\frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \cos nx.$$

Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

 $4 \times 5 = 20$

[5]

[5]

3. Answer any two questions: 2×			$2 \times 10 = 20$
(a)	(i)	State and prove the Second Mean Value Theorem of Integral Calculus in Bonnet's	[6]
		form.	
	(ii)	Evaluate $\lim_{x\to 0}\frac{1}{x^2}\int_{0}^{x^2}e^{\sqrt{t+1}}dt$.	[4]
(b)	(i)	Show that $\int_{0}^{\infty} x^{m-1} e^{-x} dx$ is convergent if and only if $m > 0$.	[5]
	(ii)	. 1	[5]
		Test the convergence of $\int_{0}^{1} \frac{\sin x}{\sqrt{x}} dx$.	
(c)	(i)	The sequence of functions $\{f_n\}$ is defined on [0,1] by $f_n(x) = x^n - x^{n-1}, x \in [0,1]$.	[4]
		Examine the uniform convergence of $\{f_n\}$ on $[0,1]$.	
	(ii)	For each n , $f_n(x) = 1 - nx$, for $0 \le x \le \frac{1}{n}$	[6]
		=0, for $\frac{1}{n} < x \le 1$.	
		Examine the pointwise convergence and the uniform convergence of $\{f_n\}$ on [0,1].	
(d)	(i)	Show that $\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \dots = \frac{1}{1-x}, \forall x, -1 < x < 1.$	[5]

(ii) Expand in a series of sines and cosines of multiples in x of the function given by [5]
 f(x) = x - π, when - π < x < 0
 = π - x, when 0 < x < π.
 What is the sum of the series for x = ±π and x = 0?