B.Sc. 5th Semester (Honours) Examination, 2022 (CBCS) Subject : Chemistry

Course : CC-XI

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- **1.** Answer *any five* questions:
 - (a) Define hypoligated and hyperligated complex.
 - (b) What is the significance of the term Dq?
 - (c) 'd d'-transitions are forbidden—Comment.
 - (d) Define magnetic double exchange phenomenon.
 - (e) What is nephelauxetic effect?
 - (f) Write the equation by using which we can determine the magnetic moment of the lanthanides.
 - (g) Write some differences between 4f and 5f orbitals.
 - (h) Write the cause of actinide contraction.

2. Answer *any two* questions:

5×2=10

 $2 \times 5 = 10$

	(a)	(i)	Give an example of low-spin Tetrahedral-complex and draw its ' d '-orbit: diagram with electronic configuration and calculate its CFSE value.	al spliting 3
		(ii)	Which type of distortion is preferred by Cu(II)-complexes? Give reason.	2
	(b)	(i)	What is OSSE? Explain with example.	. 3
		(ii)	Define magnetic super exchange phenomenon.	2
	(c)	(i)	Explain the electronic spectrum of $[Ti(H_2O_6]^{3+}]$.	3
		(ii)	Define pairing energy and give the factors on which pairing energy depends.	2
	(d)	(i)	Draw the Orgel diagram of d^2 and d^4 for Oh & Td complexes respectively.	3
		(ii)	Draw the structure of Ni-DMG complex and calculate its CFSE value.	2
3.	Answ	ver a	ny two questions:	10×2=20
	(2)	(\mathbf{i})	You have passed a solution containing La^{3+} Gd ³⁺ and Lu^{3+} through an ion	-exchange

- (a) (i) You have passed a solution containing La³⁺, Gd³⁺ and Lu³⁺ through an ion-exchange column. Then you elute the column with ammonium citrate solution. Explain in which order the ions will be eluted out. Calculate the effective magnetic moment (μ_{eff}) of Pr³⁺-ion (3+2)
 - (ii) The lanthanide elements show the common stable oxidation state of +3. Explain. 2
 - (iii) Mention the conditions for orbital contribution in spin only magnetic moment.

Please Turn Over

3

(b)	(i)	Determine the magnetic moment for the ground state of Ho^{3+} ion and Gd^{3+} ion. 3
	(ii)	Draw the MO diagram of LMCT. 2
	(iii)	One complex of Fe^{+2} is coloured due to $d - d$ transition, but another Fe^{+2} complex is very pale coloured. Explain with appropriate illustration.
	(iv)	Why heavier congener elements easily produce low-spin complexes? 2
(c)	(i)	Define ferromagnetism and anti-ferromagnetism correlating with the spin exchange coupling constant (J). 3
	(ii)	What do you mean by Curie Point and Neel Point? 2
	(iii)	Write the relationship between spectra and magnetic moment of a complex. 2
	(iv)	Comment on the magnetic behaviour of solid AgO. 3
(d)	(i)	What is intensity stealing? Give an example. 3
	(ii)	'MnO ₄ ⁻ is intensely colourd but TcO_4^- and ReO_4^- are colourless'— account for the fact. 2
	(iii)	Absorption band of $[V(H_2O)_6]^{2+}$ gives transition band at 12300 cm ⁻¹ , 18500 cm ⁻¹ and 27900 cm ⁻¹ . Identify the transition for 12300 cm ⁻¹ .
	(iv)	Aqueous Mn(II)–Sulphate is almost colourless but aqueous solution of Cu(II)–sulphate is blue — Explain.