SH-V/Physics/DSE-2/22

B.Sc. 5th Semester (Honours) Examination, 2022 (CBCS)

Subject : Physics

Paper : DSE-2(5)

(Classical Dynamics)

Time: 3 Hours

Full Marks: 60

 $2 \times 10 = 20$

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable. Symbols and abbreviations have their usual meanings.

- 1. Answer any ten of the following questions:
 - (a) Prove that the magnetic force does no work.
 - (b) Mention two advantages of Lagrangian mechanics over Newtonian mechanics.
 - (c) A double pendulum consists of two point masses *m* attached by strings of length *l*. The strings make angles θ_1 and θ_2 with the vertical axis, find the kinetic energy of the pendulum.
 - (d) If the Lagrangian of a particle moving in one dimension is given by $L = \frac{\dot{x}^2}{2m} V(x)$, find the corresponding Hamiltonian.
 - (e) If the Hamiltonian does not depend upon time explicitly, show that it is a conserved quantity.
 - (f) A particle of mass *m* is moving in the potential $V = -\frac{a}{2}x^2 + \frac{b}{4}x^4$ where *a* and *b* are positive constants. Find the equilibrium position of the particle about which the small oscillation is observed.
 - (g) Define normal coordinates and normal frequencies.
 - (h) State the postulates of special theory of relativity.
 - (i) Two events separated by a (spatial) distance 9×10^9 m are simultaneous in one inertial frame. What will be the time interval between these two events in a frame moving with a constant speed 0.8 c (where the speed of light $c = 3 \times 10^8$ m/s).
 - (j) What is world line? Draw the world line in S-frame of a particle at rest in S'inertial frame where S' frame moves with velocity \vec{v} with respect to S-frame along x-direction.
 - (k) What is future and past light cone in special theory of relativity?
 - (1) An inertial frame S' moves with velocity \vec{v} relative to another inertial frame S along x-axis. Obtain the value of length in S which is unit length in S'.
 - (m) The muon has rest mass 105 MeV/c^2 and energy 315 MeV. Find the velocity of muon.
 - (n) What is Reynold's number? State its significance.
 - (o) Define streamline and turbulent motion of fluid flow.

(5)

SH-V/Physics/DSE-2/22

(6)

- 2. Answer *any four* of the following questions:
 - (a) Define generalised coordinates of a dynamical system. Obtain the Lagrangian and Lagrange's equation of motion of simple pendulum. Find the angular frequency for small amplitude of the oscillation. 1+3+1=5
 - (b) What do you mean by rotational invariance of a quantity? If the Lagrangian of a closed system remains rotationally invariant, prove that the angular momentum of the system is a conserved quantity. 1+4=5
 - (c) Establish the Lagrangian and deduce the Lagrange's equations of motion for small oscillations of a system with N degrees of freedom in the neighbourhood of stable equilibrium.
 - (d) Write down the Lorentz transformations in Minkowski space (x, y, z, t). Explain the time dilation using Minkowski diagram.
 - (e) Explain the term. 'two events with space-like separation has no causal relation'. Derive the four acceleration vector in terms of three acceleration vector and three velocity vector of the particle.
 2+3=5
 - (f) Using Naiver-Stokes equation for incompressible fluid derive the velocity-profile of fluid-flow in a cylindrical pipe. 5

3. Answer any two of the following questions:

10×2=20

- (a) (i) A crossed electric and magnetic field is applied to a region where a charged particle of mass m and charge q is at rest at the origin. Derive the equation of motion of the charged particle.
 - (ii) Find the eigen frequencies of small oscillations of a system containing two equal masses attached by a spring. Also find the relation between the amplitudes of the two masses at the eigen frequencies. 6+(3+1)=10
- (b) (i) Define Hamiltonian of a system. Obtain the Hamilton's equations of motion.
 - (ii) A particle of mass *m* is constrained to move on a cylindrical surface of radius *R* under potential $V = \frac{1}{2}k(R^2 + z^2)$ where *k* is a constant and z-axis is the axis of the cylinder. Construct the Hamiltonian and Hamilton's equations of motion. Show that the particle oscillates along z-axis. (1+3)+(5+1)=10
- (c) (i) Show that Lorentz transformation is an imaginary rotation of an orthogonal coordinate system.

The space-time coordinates (x,y,z,t) of two events in S-frame are (0,0,0,0) and (6c,0,0,4), where c is the speed of light in vacuum and the time coordinate is in second. Find the space-time interval between two events. Mention the nature of the interval.

(ii) Define four-momentum (P_{μ}) vector. Show that it is related with three momentum vectors and energy. Prove that $P_{\mu} P^{\mu}$ is a Lorentz invariant. (3+2)+(1+2+2)=10

5×4=20

SH-V/Physics/DSE-2/22

(7)

(d) (i) Prove that $x_{\mu}x^{\mu}$ is an invariant quantity under Lorentz transformation.

A nucleus at rest with mass m_0 decays spontaneously into two components of rest masses m_1 and m_2 . Show that $m_0 > m_1 + m_2$. Explain by considering energy-momentum conservation.

(ii) What do you mean by fluid particle? Derive the equation of continuity for fluid flow.

(2+4)+(1+3)=10