B.A/B.Sc 6th Semester (Honours) Examination, 2022 (CBCS) Subject: Mathematics Paper: BMH6 CC14 (Ring Theory and Linear Algebra-II)

Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any ten questions:10×		×2=20
(a)	Show that $\mathbb{R}[x]/\langle x^2+1\rangle \cong \mathbb{C}$.	[2]
(b)	Let R be a ring with identity. Prove that $R[x]$ is a PID if R is a field.	[2]
(c)	Prove that the polynomial $1 + x + x^2 + + x^n$ is irreducible in $\mathbb{Q}[x]$ if $n+1$ is a	[2]
	prime number.	
(d)	If R and S are PIDs, then prove that $R \times S$ is PID.	[2]
(e)	Prove that $\mathbb{Z}[x]$ is not PID.	[2]
(f)	Let R be an UFD. Then prove that an element a of R is prime if it is	[2]
	irreducible.	
(g)	Let R be an integral domain. Then prove that every prime element is	[2]
	irreducible.	
(h)	Let p be a non-zero element of a commutative ring R with identity. Prove that	[2]
	p is prime if and only if $\langle p \rangle$ is a prime ideal.	
(i)	Find two mutually orthogonal vectors each of which is orthogonal to the vector	[2]
	$\alpha = (4,2,3)$ of vector space \mathbb{R}^3 over \mathbb{R} with respect to the standard inner	
	product.	
(j)	Show that every finite dimensional vector space is an inner product space.	[2]
(k)	If \mathbb{R}^2 is a vector space over \mathbb{R} and B={(2,1),(3,1)} is a basis of \mathbb{R}^2 , find the dual	[2]
	basis of B.	
(1)	If V is a finite dimensional vector space over a field F and $x_1 \neq x_2$ in V, then	[2]
	prove that $\exists f \in V^*$ such that $f(x_1) \neq f(x_2)$.	
(m)	If V is a vector space over a field F and f is a linear functional from V to F, then	[2]
	show that $f(\theta) = 0$, θ in V and 0 in F.	
(n)	Prove that in an inner product space the vectors α , β are linearly dependent iff	[2]
	$ =\ lpha\ \ eta\ $	
(0)	Prove that an ideal $\langle x \rangle$ is maximal ideal in a ring $\mathbb{R}[x]$.	[2]
(n)	If <i>V</i> is a vector space over a field F and <i>f</i> is a linear functional from <i>V</i> to <i>F</i> , then show that $f(\theta) = 0$, θ in <i>V</i> and 0 in <i>F</i> . Prove that in an inner product space the vectors α , β are linearly dependent iff $ \langle \alpha, \beta \rangle = \alpha \beta $	[2]

Full Marks: 60

2.	Answ	er any four questions: 4×	5 = 20	
(a)		Prove that the ring $\mathbb{Z}[i]$ of Gaussian integers is PID.	[5]	
(b)		Prove that 2 and $1 + \sqrt{5}$ are irreducible in $\mathbb{Z}[\sqrt{5}]$.	[5]	
(c)		Prove that any polynomial over \mathbb{R} of degree ≥ 3 is reducible over \mathbb{R} .	[5]	
(d)		Give an example of a polynomial which is irreducible over \mathbb{Z} but not irreducible over \mathbb{Z}_2 .	[5]	
(e)		Let $V = P(\mathbb{R})$, the inner product space of all polynomials with real coefficients	[5]	
		over \mathbb{R} with the inner product $\langle f(x), g(x) \rangle = \int_{-1}^{1} f(t)g(t)dt$. Consider the subspace		
		$P_2(\mathbb{R})$ of all polynomials of degree less than or equal to 2. Using Gram Schmidt		
		orthogonalization process replace the basis $\{1, x, x^2\}$ of $P_2(\mathbb{R})$ by an orthonormal		
		basis of $P_2(\mathbb{R})$.		
(f)		If f and g are in V^* such that $f(v)=0$ implies $g(v)=0$, prove that $g=\beta f$ for some β	[5]	
		in field F.		
			10 = 20	
(a)	(i)	In $\mathbb{Z}[x]$, prove that $\langle x \rangle$ is a prime ideal but not a maximal ideal	[5]	
	(ii)	Prove that $\mathbb{Z}[x]/\langle 1+x^2 \rangle$ is isomorphic with the ring of Gaussian integers $\mathbb{Z}[i]$.	[5]	
(b)	(i)	Determine all irreducible polynomials of degree 2 in $\mathbb{Z}_2[x]$.	[5]	
	(ii)	Let R be an UFD and P be a nonzero prime ideal of R . Then prove that there	[5]	
		exists an irreducible element in P.		
(c)		Let <i>V</i> be the vector space of all polynomial functions from \mathbb{R} to \mathbb{R} which have	[5+5]	
		degree less than or equal to 2. Let t_1 , t_2 , t_3 be three distinct real numbers and L_i :		
		$V \rightarrow \mathbb{R}$ be such that $L_i(p(x))=p(t_i)$, i=1,2,3. Show that $\{L_1, L_2, L_3\}$ is a basis of		
		V^* . Determine a basis for V such that {L ₁ , L ₂ , L ₃ } is its dual.		
(d)	(i)	Prove that any finite dimensional inner product space has an orthonormal basis.	[4]	
	(ii)	Let R be a PID. Then prove that any nonzero proper ideal of ring R can be	[6]	

(ii) Let R be a PID. Then prove that any nonzero proper ideal of ring R can be [6] expressed as finite product of maximal ideals of R.