B.Sc. 3rd Semester (Honours) Examination, 2023 (CBCS)
 Subject : Chemistry
 Course : CC-V
 (Physical Chemistry-II)

Time: 2 Hours

Full Marks: 40
Candidates are requested to give their answers in their own words as far as practicable.

1. Answer any five questions:

(a) Show that the error in the de Broglie wavelength (λ) is related to the error in velocity (v) by the relation $\mathrm{d} \lambda=-(\lambda / \mathrm{v}) \mathrm{dv}$.
(b) Derive a relation between ionic mobility and ionic conductance.
(c) State and explain Walden's rule.
(d) The conductivity of pure water at $25^{\circ} \mathrm{C}$ is $5.5 \times 10^{-6} \mathrm{~S} \mathrm{~m}^{-1}$, calculate the value of molar conductance of pure water at that temperature. Given the density of pure water is $0.997 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$.
(e) If there is 1% error in the value of ' r ', the radius of capillary, what will be the error in the viscosity coefficient value calculated by using Poiseuille equation?
(f) The IR spectrum of ${ }^{75} \mathrm{Br}^{19} \mathrm{~F}$ consists of an intense line at $380 \mathrm{~cm}^{-1}$. Calculate the force constant of ${ }^{75} \mathrm{Br}^{19} \mathrm{~F}$ considering SHO approximation.
(g) Depict schematically the normalized harmonic-oscillator wave functions and corresponding probability densities for first two states of a SHO.
(h) Ice melts at lower temperature under higher pressure. - Explain according to Le Chatelier's principle.
2. Answer any two questions:
(a) (i) Prove $\left(\frac{\partial A}{\partial n_{i}}\right)_{V, T, n_{j \neq i}}=\left(\frac{\partial H}{\partial n_{i}}\right)_{S, P, n_{j \neq i}}$
(ii) 2 mol of N_{2} and 2 mol of He gas are mixed at 300 K . Considering the gases as ideal, calculate $\Delta \mathrm{S}_{\text {mix }}$ and $\Delta \mathrm{G}_{\text {mix }}$ and hence arrive at the value of $\Delta \mathrm{H}_{\text {mix }}$ using the value of $\Delta \mathrm{G}_{\text {mix }}$ and $\Delta \mathrm{S}_{\text {mix }}$. $\quad 2+3$
(b) (i) If $\mathrm{Z}=\mathrm{Z}(\mathrm{X}, \mathrm{Y})$, where Z is a thermodynamic state function with natural variables X and Y, write the expression of 'partial molar Z ' and the expression of 'chemical potential' in terms of Z for an open system.
(ii) Derive an expression for the fugacity of a gas that obeys the equation of state: $\mathrm{P}(\mathrm{V}-b)=\mathrm{RT}$, where b is a constant and V refers to molar volume.
(iii) What is the significance of Gibbs-Duhem equation?
(c) (i) Show that the length of the 1 D box is an integral multiple of $\lambda / 2$ where λ is the wavelength associated with the particle-wave for the particle in 1D box.
(ii) Normalise the wave function $\mathrm{N}_{1}\left(a^{2}-x^{2}\right)$ within $-a \leq x \leq a$.
(iii) Starting from Newton's law, arrive at the dimension of viscosity coefficient.
(d) (i) Determine the degrees of degeneracy of the level with energy $38 h^{2} / 8 m a^{2}$ for a particle of mass ' m ' moving in a cubical box of side length ' a '.
(ii) Find out the dimension of the wave function for the 'particle in 1D box' system with proper justification.
(iii) Name the phenomenon that proves the 'particle like behavior of light' and the 'wave like behavior electron'.
$2+2+1$
3. Answer any two questions:
$10 \times 2=20$
(a) (i) State and explain Ostwald dilution law and hence derive the following relation: $1 / \Lambda=1 / \Lambda^{\circ}+c \Lambda / K \Lambda^{\circ 2},\left[\Lambda^{\circ}=\right.$ molar conductance at infinite dilution, $\mathrm{K}=$ dissociation constant and $c=$ concentration] and comment on its utility.
(ii) Draw the curves for the conductometric titration of oxalic acid with NaOH and $\mathrm{NH}_{4} \mathrm{OH}$ in two separate diagrams with proper explanation.
(iii) If the equivalent conductances of solutions with varying concentrations of sodium acetate, sodium chloride and hydrochloric acid are plotted against \sqrt{c}, the intercepts obtained are $91.0,128$ and 425 respectively in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{eqv}^{-1}$ unit at $25^{\circ} \mathrm{C}$. If the resistance of 0.02 molar solution of acetic acid in a cell with cell constant $0.2061 \mathrm{~cm}^{-1}$ be 888 ohms at $25^{\circ} \mathrm{C}$, what is the degree of dissociation of the acid at $25^{\circ} \mathrm{C}$.
(iv) What is meant by Newtonian fluid? Define the viscosity coefficient of such a fluid.
(b) (i) Show that $\mathrm{e}^{\mathrm{ikx}}$ is an eiganfunction of the operator $P_{x}=-i h(\partial / \partial x)$. Find the eigenvalue.
(ii) Derive the expression for the operator $[(d / d x+x)(d / d x-x)]$.
(iii) Calculate the wavelength of the photon absorbed when a particle of mass $10^{-27} \mathrm{~g}$ confined to move freely in a 1D box of length $6 \AA$ undergoes a transition from $n=2$ to $n=3$ level.
(iv) The classical turning point of a SHO, by definition, is a point at which $\mathrm{E}-\mathrm{V}(x)=0$. Find out the value of the classical turning point of a SHO at its ground state in terms of the fundamental frequency of the oscillator.
(v) What is meant by the term 'action'? What is its utility? Write its unit \& dimension.

$$
2+2+2+2+2
$$

(c) (i) Show that the equilibrium condition for a chemical reaction is give by $\sum v_{i} \mu_{i}=0$, where the symbols have their usual significance.
(ii) The dissociation constant of CaCO_{3} at $900^{\circ} \mathrm{C}$ and $1000^{\circ} \mathrm{C}$ are measured to be 790 mm and 2940 mm respectively. Calculate the heat dissociation at this temperature range.
(iii) Discuss about the relative values of the total ion conductance of the pair of dilute solutions of the same strong electrolyte in each of the cases below with short explanations:
(I) Solution 1 and solution 2 having molar concentration c_{1} and $c_{2}\left[c_{1}>c_{2}\right]$ at same temperature in same solvent.
(II) Solution 3 and solution 4 having same molar concentration at temperature T_{3} and T_{4} respectively $\left[T_{3}>T_{4}\right]$ in same solvent.
(III) Solution 5 and solution 6 having same molar concentration in two different solvents with same viscosity but varying di-electric constants ε_{5} and $\varepsilon_{6}\left[\varepsilon_{5}>\varepsilon_{6}\right]$ at same temperature.
(IV) Solution 7 and solution 8 having same molar concentration in two different solvents with same di-electric constants but varying viscosity coefficients η_{7} and $\eta_{8}\left[\eta_{7}>\eta_{8}\right]$ at same temperature.
(iv) How is it possible to approach to the value of 'conductance at infinite dilution' without dilution of a dilute solution of a strong electrolyte? Explain with reference to DebyeHuckel theory.
$2+2+4+2$
(d) (i) The partial molar volumes of the components for an ideal solution are equal to the respective molar volumes of the pure components. -Justify the statement.
(ii) Prove that the addition of inert gas to a gaseous reacting system at constant volume keeping the temperature fixed, does not affect the equilibrium.
(iii) Write down the standard expression of reaction isotherm. From it, derive the Reaction Isochore.
(iv) Find the value of the commutator of \hat{x} and $\widehat{p_{x}}$.
(v) If we like to extract at a time 51% of the iodine present in 100 ml of an aqueous solution of the same, what volume of $\mathrm{CC1}_{4}$ is needed? Given that at the experimental temperature, the distribution coefficient of iodine between $\mathrm{CC1}_{4}$ and water is 85 .
$2+2+2+2+2$

