B.Sc. 3rd Semester (Honours) Examination, 2023 (CBCS)

Subject : Chemistry

Course : CC-V

(Physical Chemistry-II)

Time: 2 Hours

Full Marks: 40

 $2 \times 5 = 10$

Candidates are requested to give their answers in their own words as far as practicable.

- 1. Answer any five questions:
 - (a) Show that the error in the de Broglie wavelength (λ) is related to the error in velocity (v) by the relation $d\lambda = -(\lambda/v) dv$.
 - (b) Derive a relation between ionic mobility and ionic conductance.
 - (c) State and explain Walden's rule.
 - (d) The conductivity of pure water at 25°C is 5.5×10^{-6} S m⁻¹, calculate the value of molar conductance of pure water at that temperature. Given the density of pure water is 0.997 g/mL at 25°C.
 - (e) If there is 1% error in the value of 'r', the radius of capillary, what will be the error in the viscosity coefficient value calculated by using Poiseuille equation?
 - (f) The IR spectrum of ⁷⁵Br¹⁹F consists of an intense line at 380 cm⁻¹. Calculate the force constant of ⁷⁵Br¹⁹F considering SHO approximation.
 - (g) Depict schematically the normalized harmonic-oscillator wave functions and corresponding probability densities for first two states of a SHO.
 - (h) Ice melts at lower temperature under higher pressure. Explain according to Le Chatelier's principle.
 - 2. Answer *any two* questions:

(a) (i) Prove
$$\left(\frac{\partial A}{\partial n_i}\right)_{V,T,n_{j\neq i}} = \left(\frac{\partial H}{\partial n_i}\right)_{S,P,n_{j\neq i}}$$

(ii) 2 mol of N₂ and 2 mol of He gas are mixed at 300 K. Considering the gases as ideal, calculate ΔS_{mix} and ΔG_{mix} and hence arrive at the value of ΔH_{mix} using the value of ΔG_{mix} and ΔS_{mix} .

Please Turn Over

5×2=10

208

30175

- (b) (i) If Z = Z(X,Y), where Z is a thermodynamic state function with natural variables X and Y, write the expression of 'partial molar Z' and the expression of 'chemical potential' in terms of Z for an open system.
 - (ii) Derive an expression for the fugacity of a gas that obeys the equation of state: P(V-b)=RT, where *b* is a constant and V refers to molar volume.
 - (iii) What is the significance of Gibbs-Duhem equation? 2+2+1
- (c) (i) Show that the length of the 1D box is an integral multiple of λ/2 where λ is the wavelength associated with the particle-wave for the particle in 1D box.
 - (ii) Normalise the wave function $N_1(a^2-x^2)$ within $-a \le x \le a$.
 - (iii) Starting from Newton's law, arrive at the dimension of viscosity coefficient. 2+2+1
- (d) (i) Determine the degrees of degeneracy of the level with energy $38h^2/8ma^2$ for a particle of mass 'm' moving in a cubical box of side length 'a'.
 - (ii) Find out the dimension of the wave function for the 'particle in 1D box' system with proper justification.
 - (iii) Name the phenomenon that proves the 'particle like behavior of light' and the 'wave like behavior electron'.
- 3. Answer any two questions:
 - (a) (i) State and explain Ostwald dilution law and hence derive the following relation: $1/\Lambda = 1/\Lambda^{\circ} + c\Lambda/K\Lambda^{\circ 2}$, [$\Lambda^{\circ} =$ molar conductance at infinite dilution, K = dissociation constant and c = concentration] and comment on its utility.
 - (ii) Draw the curves for the conductometric titration of oxalic acid with NaOH and NH₄OH in two separate diagrams with proper explanation.
 - (iii) If the equivalent conductances of solutions with varying concentrations of sodium acetate, sodium chloride and hydrochloric acid are plotted against \sqrt{c} , the intercepts obtained are 91.0, 128 and 425 respectively in ohm⁻¹ cm² eqv⁻¹ unit at 25°C. If the resistance of 0.02 molar solution of acetic acid in a cell with cell constant 0.2061 cm⁻¹ be 888 ohms at 25°C, what is the degree of dissociation of the acid at 25°C.
 - (iv) What is meant by Newtonian fluid? Define the viscosity coefficient of such a fluid. 3+2+3+2
 - (b) (i) Show that e^{ikx} is an eiganfunction of the operator $P_x = -ih(\partial/\partial x)$. Find the eigenvalue.
 - (ii) Derive the expression for the operator [(d/dx+x)(d/dx-x)].

 $10 \times 2 = 20$

2+2+2+2+2

- (iii) Calculate the wavelength of the photon absorbed when a particle of mass 10^{-27} g confined to move freely in a 1D box of length 6Å undergoes a transition from n=2 to n=3 level.
- (iv) The classical turning point of a SHO, by definition, is a point at which E-V(x)=0. Find out the value of the classical turning point of a SHO at its ground state in terms of the fundamental frequency of the oscillator.
- (v) What is meant by the term 'action'? What is its utility? Write its unit & dimension.
- (c) (i) Show that the equilibrium condition for a chemical reaction is give by $\Sigma v_i \mu_i = 0$, where the symbols have their usual significance.
 - (ii) The dissociation constant of CaCO₃ at 900°C and 1000°C are measured to be 790 mm and 2940 mm respectively. Calculate the heat dissociation at this temperature range.
 - (iii) Discuss about the relative values of the total ion conductance of the pair of dilute solutions of the same strong electrolyte in each of the cases below with short explanations:
 - (I) Solution 1 and solution 2 having molar concentration c_1 and c_2 [$c_1 > c_2$] at same temperature in same solvent.
 - (II) Solution 3 and solution 4 having same molar concentration at temperature T_3 and T_4 respectively $[T_3 > T_4]$ in same solvent.
 - (III) Solution 5 and solution 6 having same molar concentration in two different solvents with same viscosity but varying di-electric constants ε_5 and $\varepsilon_6[\varepsilon_5 > \varepsilon_6]$ at same temperature.
 - (IV) Solution 7 and solution 8 having same molar concentration in two different solvents with same di-electric constants but varying viscosity coefficients η_7 and $\eta_8 [\eta_7 > \eta_8]$ at same temperature.
 - (iv) How is it possible to approach to the value of 'conductance at infinite dilution' without dilution of a dilute solution of a strong electrolyte? Explain with reference to Debye-Huckel theory.
 - (d) (i) The partial molar volumes of the components for an ideal solution are equal to the respective molar volumes of the pure components. —Justify the statement.
 - (ii) Prove that the addition of inert gas to a gaseous reacting system at constant volume keeping the temperature fixed, does not affect the equilibrium.
 - (iii) Write down the standard expression of reaction isotherm. From it, derive the Reaction Isochore.
 - (iv) Find the value of the commutator of \hat{x} and \hat{p}_x .

(4)

(v) If we like to extract at a time 51% of the iodine present in 100 ml of an aqueous solution of the same, what volume of CC1₄ is needed? Given that at the experimental temperature, the distribution coefficient of iodine between CC1₄ and water is 85. 2+2+2+2+2