SH-III/CEMH/CC-VI/24

B.Sc. 3rd Semester (Honours) Examination, 2023 (CBCS)

Subject : Chemistry

Course : CC-VI

(Inorganic Chemistry-II)

Time: 2 Hours

Full Marks: 40

 $2 \times 5 = 10$

5×2=10

The figures in the margin indicate full marks. Candidates are required to give their answer in their own words as far as applicable.

- 1. Answer *any five* questions from the following:
 - (a) To which radioactive series does $^{237}Ac_{89}$ belong?
 - (b) Mention one example of both d^3s and dsp^2 hybridised compound.
 - (c) Define ionic potential and indicate its implication is Chemistry.
 - (d) Calculate the formal charge on the constituent atoms in CO_3^{2-} .
 - (e) Which one of ${}^{206}Pb_{82}$ ${}^{207}Pb_{82}$, ${}^{208}Pb_{82}$ is the stablest nuclide and why?
 - (f) Explain why the conductivity of 'Ge' is enhanced many folds when trace amount of 'As' is added to it.
 - (g) Compare between Schottky and Frenkel defects.
 - (h) H₂O has more boiling point than HF though their hydrogen band strength are in reverse order.— Explain.
- 2. Answer *any two* questions from the following:
 - (a) State the Fajan's Polarisation Rules. Applying these classify MgO and SnCl₄ into ionic and covalent compounds as the case may be. 2+1.5+1.5
 - (b) (i) 'The dissociation energies of N_2^+ and O_2^+ are very similar'— Comment using MO theory.
 - (ii) N_3^- is more resonance stabilized than HN_3 .— Explain. 3+2
 - (c) Is tritium expected to be an alpha or beta emitter? Write the equation for its decay. Calculate the activity of 0.1g 220 Rn₈₆. (T_{1/2} = 55.65 s) 1+1+3
 - (d) (i) State and explain Bent's rule with suitable examples.
 - (ii) Calculate the lattice energy of NaCl using the given data. Madelung Constant (A) = 1.748, Equilibrium ionic distance= 2.79Å, Born Exponent = 8, Electronic Charge = 4.8×10^{-10} esu. 2+3

Please Turn Over

30176

SH-III/CEMH/CC-VI/24

- (i) He gas is frequently available near uranium mines. Explain. (a)
 - (ii) Predict the shapes of the following species and identify the hybridizations of central atoms : $XeOF_4$ and I_5^- .
 - (iii) Explain why LiClO₄ is much more soluble than CsClO₄ in water.

(2)

- 2+(2+2)+2+2(iv) Ne₂ does not exist, explain with the help of MO diagram.
- (i) Ozone molecule shows unusually low dipole moment. Explain. (b)
 - (ii) What is F-Centre? How F-Centres influence the colour and electrical conductivity of ionic crystals?
 - (iii) MgSO₄ is freely soluble in water whereas BaSO₄ is in soluble in it. On the other 3+(1+2)+4hand BaO is 2000 times more soluble than MgO in water.— Explain.
- (i) A piece of wood was found to have ${}^{14}C$: ${}^{12}C$ ratio 0.7 times to that in a living plant. (c) Calculate the period when the plant died (T¹/₂ of 14 C = 5760 Years).
 - (ii) From the plot of binding energy per nucleon vs mass number curve, explain why the lighter elements undergo fusion but the heavier elements undergo fissions.
 - (iii) Give a short note on liquid drop model.
- (d) (i) Write a short note on the band theory of metals.
 - (ii) What are semiconductors? Give an example of p-type semiconductor. Explain why the electrical conductivity of metal decreases with the rise in temperature but reverse occurs with semiconductors.
 - (iii) Illustrate with suitable example(s) 'instantaneous dipole induced dipole' interactions. 2+(2+1+2)+3

4 + 3 + 3