B.A./B.Sc. 3rd Semester (Honours) Examination, 2023 (CBCS) Subject : Mathematics Course : BMH3CC07 (Numerical Methods)

Time : 2 Hours

Full Marks : 40

 $2 \times 5 = 10$

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Notation and Symbols have their usual meaning.

1. Answer *any five* questions:

- (a) If $u(x, y, z) = xyz^2$ and errors in x, y, z are 0.005, 0.001 and 0.002 respectively at x = 3, y = 1, z = 1. Compute the maximum absolute error in evaluating u at (3, 1, 1).
- (b) Find the number of significant figure in $V_T = 1.5923$ given its relative error as 0.1×10^{-3} .
- (c) If $f(x) = x^2$, then show that $\Delta^r f(x) = 0$ for $r \ge 3$, where Δ is the forward difference operator.
- (d) Write down the geometric interpretation of modified Euler's method.
- (e) Find the values for x_1 , x_2 and x_3 while solving the equations

 $4x_1 + x_2 + 2x_3 = 4$ $x_1 + x_2 + 3x_3 = 3$ $3x_1 + 5x_2 + x_3 = 7,$

by Gauss-Seidal iterative method after one iteration on taking $x_1^{(0)} = x_2^{(0)} = x_3^{(0)} = 0$.

- (f) What do you mean by order of convergence of an iterative method? What is the order of convergence of Regula-Falsi method? 1+1=2
- (g) What are the advantages and disadvantages of partial and complete pivoting?
- (h) Find the degree of precision of Simpson's one-third rule.
- 2. Answer *any two* questions:
 - (a) The equation $x^2 + ax + b = 0$ has two real roots α and β . Show that the iteration method $x_{k+1} = -\frac{ax_k+b}{x_k}$ is convergent near $x = \alpha$ if $|\alpha| < |\beta|$ and $x_{k+1} = -\frac{x_k^2+b}{a}$ is convergent near $x = \alpha$ if $2|\alpha| < |\alpha + \beta|$.

Please Turn Over 409

 $5 \times 2 = 10$

30141

ASH-III/MTMH/CC-VII/24

(2)

(b) Solve the following linear system of equations by Gauss-Jordan method:

 $4x_1 - 2x_2 + x_3 = -8$ $3x_1 + 9x_2 - 2x_3 = 11$ $4x_1 + 2x_2 + 13x_3 = 24$

(c) If $u_x = a + bx + cx^2$, prove that $\int_1^3 u_x \, dx = 2u_2 + \frac{1}{12}(u_0 - 2u_2 + u_4)$ and hence find an

approximate value of
$$\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-\frac{x^2}{10}} dx$$
. 3+2=5

(d) Describe power method for determination of the largest eigen value and the corresponding eigen vector of a square matrix. When does the method fail?
4+1=5

3. Answer *any two* questions:

$$10 \times 2 = 20$$

5

- (a) (i) Deduce Lagrange's interpolation formula from Newton's divided difference interpolation formula.
 - (ii) Complete the following table:

x	10	15	20	25	30	35
f(x)	19.97	21.51	_	23.52	24.65	_

- (b) (i) Explain the method of fixed-point iteration with the condition of convergence for numerical solution of an equation of the form $x = \phi(x)$. 5
 - (ii) Show that the Cote's co-efficients $K_r^{(n)}$, r = 0, 1, 2, ..., n in Newton-Cote's quadrature formula satisfy the relation $\sum_{r=0}^{n} K_r^{(n)} = 1$.
- (c) (i) Describe the composite Weddle's rule of integration.
 - (ii) Using Newton's forward interpolation formula obtain the expression of f'(x). 5+5=10
- (d) (i) Solve the following system of equations by LU-decomposition method:

 $x_1 + x_2 - x_3 = 2$ $2x_1 + 3x_2 + 5x_3 = -3$ $3x_1 + 2x_2 - 3x_3 = 6$

(ii) Establish the second-order Runge-Kutta method for solving the differential equation $\frac{dy}{dx} = f(x, y)$ subject to the condition $y(x_0) = y_0$. 5+5=10