B.A./B.Sc. 3rd Semester (Honours) Examination, 2023 (CBCS)
 Subject : Mathematics
 Course : BMH3CC07
 (Numerical Methods)

Time : $\mathbf{2}$ Hours
Full Marks : 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
Notation and Symbols have their usual meaning.

1. Answer any five questions:
(a) If $u(x, y, z)=x y z^{2}$ and errors in x, y, z are $0.005,0.001$ and 0.002 respectively at $x=3$, $y=1, z=1$. Compute the maximum absolute error in evaluating u at $(3,1,1)$.
(b) Find the number of significant figure in $V_{T}=1.5923$ given its relative error as 0.1×10^{-3}.
(c) If $f(x)=x^{2}$, then show that $\Delta^{r} f(x)=0$ for $r \geq 3$, where Δ is the forward difference operator.
(d) Write down the geometric interpretation of modified Euler's method.
(e) Find the values for x_{1}, x_{2} and x_{3} while solving the equations
$4 x_{1}+x_{2}+2 x_{3}=4$
$x_{1}+x_{2}+3 x_{3}=3$
$3 x_{1}+5 x_{2}+x_{3}=7$,
by Gauss-Seidal iterative method after one iteration on taking $x_{1}^{(0)}=x_{2}^{(0)}=x_{3}^{(0)}=0$.
(f) What do you mean by order of convergence of an iterative method? What is the order of convergence of Regula-Falsi method?
(g) What are the advantages and disadvantages of partial and complete pivoting?
(h) Find the degree of precision of Simpson's one-third rule.
2. Answer any two questions:
(a) The equation $x^{2}+a x+b=0$ has two real roots α and β. Show that the iteration method $x_{k+1}=-\frac{a x_{k}+b}{x_{k}}$ is convergent near $x=\alpha$ if $|\alpha|<|\beta|$ and $x_{k+1}=-\frac{x_{k}^{2}+b}{a}$ is convergent near $x=\alpha$ if $2|\alpha|<|\alpha+\beta|$.
(b) Solve the following linear system of equations by Gauss-Jordan method:
$4 x_{1}-2 x_{2}+x_{3}=-8$
$3 x_{1}+9 x_{2}-2 x_{3}=11$
$4 x_{1}+2 x_{2}+13 x_{3}=24$
(c) If $u_{x}=a+b x+c x^{2}$, prove that $\int_{1}^{3} u_{x} d x=2 u_{2}+\frac{1}{12}\left(u_{0}-2 u_{2}+u_{4}\right)$ and hence find an approximate value of $\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{\frac{-x^{2}}{10}} d x$.
(d) Describe power method for determination of the largest eigen value and the corresponding eigen vector of a square matrix. When does the method fail?
3. Answer any two questions:
$10 \times 2=20$
(a) (i) Deduce Lagrange's interpolation formula from Newton's divided difference interpolation formula.
(ii) Complete the following table:

x	10	15	20	25	30	35
$f(x)$	19.97	21.51	-	23.52	24.65	-

(b) (i) Explain the method of fixed-point iteration with the condition of convergence for numerical solution of an equation of the form $x=\phi(x)$.
(ii) Show that the Cote's co-efficients $K_{r}^{(n)}, r=0,1,2, \ldots, n$ in Newton-Cote's quadrature formula satisfy the relation $\sum_{r=0}^{n} K_{r}^{(n)}=1$.
(c) (i) Describe the composite Weddle's rule of integration.
(ii) Using Newton's forward interpolation formula obtain the expression of $f^{\prime}(x) . \quad 5+5=10$
(d) (i) Solve the following system of equations by LU-decomposition method:

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=2 \\
& 2 x_{1}+3 x_{2}+5 x_{3}=-3 \\
& 3 x_{1}+2 x_{2}-3 x_{3}=6
\end{aligned}
$$

(ii) Establish the second-order Runge-Kutta method for solving the differential equation $\begin{aligned} \frac{d y}{d x}=f(x, y) \text { subject to the condition } y\left(x_{0}\right)=y_{0} . & 5+5=10\end{aligned}$

