SH-III/PHSH/CC-V/24

B.Sc. 3rd Semester (Honours) Examination, 2023 (CBCS)

Subject : Physics

Course : CC-V
(Mathematical Physics)
Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as applicable.

1. Answer any five questions from the following:
$2 \times 5=10$
(a) What is Rodrigue formula for Legendre polynomial?
(b) Check the orthogonality of $\sin 3 x$ and $\sin 4 x$ in the interval $-\pi$ to π.
(c) Write down the Laguerre differential equation explaining the significant terms. Comment on the singularity at $x=0$.
(d) Show that if a real $f(x)$ is expanded in a complex exponential Fourier series $\sum_{-\infty}^{\infty} C_{n} e^{i n x}$, then $C_{-n}=\bar{C}_{n}$, where \bar{C}_{n} means the complex conjugate of C_{n}.
(e) Find the value of $\Gamma(2 / 3) / \Gamma(8 / 3)$.
(f) Find the value of $\operatorname{erf}(\infty)$.
(g) Express x^{3} as a linear combination of Legendre polynomials.
(h) State Fuch's theorem.

Answer any two questions from the following.
2. (a) Prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=\frac{1}{2}\left[J_{n+1}(\alpha)\right]^{2}$ if $\alpha=\beta$.
(b) What do you mean by orthogonality of Bessel functions?
3. (a) Assume separation of $u=R(r) \Theta(\theta) \Phi(\varphi)$. Hence show that Laplace's equation can be decomposed into three total differential equations.
(b) Find the solution of Φ-equation subject to the condition $\Phi(\varphi+2 \pi)=\Phi(\varphi)$. $4+1$
4. Express $\int_{0}^{1} \frac{x^{4}}{\sqrt{1-x^{2}}} d x$ in terms of β-function and evaluate.
5. Prove that $\frac{1}{2}+\sum_{n=1}^{n} \cos n x=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \left(\frac{x}{2}\right)}$.
6. (a) Solve the following equation using the method of series solution: $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$.
(b) Show that $\int_{-1}^{1} x^{m} P_{n}(x) d x=0$ if $m<n$.

SH-III/PHSH/CC-V/24

7. (a) Consider the function $f(x)=x^{2},-\pi \leq x \leq \pi$.

Plot $f(x)$ in the interval $-\pi$ to π and also plot its periodic extension upto -2π and 2π.
(b) Find out the Fourier expansion of $f(x)$.
(c) Prove that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
8. (a) Prove that $\iint_{D} x^{l-1} y^{m-1} d x d y=\frac{\Gamma(l) \Gamma(m)}{\Gamma(l+m+1)} h^{l+m}$ where D is the domain $x \geq 0, y \geq 0$ and $x+y \leq h$.
(b) Show that $\frac{d}{d x}[\operatorname{erf}(a x)]=\frac{2 a}{\sqrt{\pi}} e^{-a^{2} x^{2}}$.
(c) Considering the frequency distribution of error as $f(x)=A e^{-h^{2} x^{2}}$, show that average error
is $\eta=1$ is $\eta=\frac{1}{h \sqrt{\pi}}$.

$$
4+3+3
$$

9. A rectangular stretched membrane of sides a and b having its edges parallel to x - and y-axes, and bounded rigidly at the edges, is given a slight deformation in the z-direction perpendicular to the plane. The differential equation for z is given by $\frac{\partial^{2} z}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}\right)$, where c is a constant. Solve the equation by the method of separation of variables, assuming the initial conditions $z=f(x, y)$ and $\frac{d z}{d t}=0$ at $t=0$.
