B.Sc. 4th Semester (Honours) Examination, 2023 (CBCS) Subject : Physics
 Course : CC-IX
 (Elements of Modern Physics)

Time: $\mathbf{2}$ Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
Group-A

1. Answer any five questions:
$2 \times 5=10$
(a) What is meant by a wave packet? Why do we need it? $1+1$
(b) The life-time of an excited state of an atom is 10^{-8} s. Calculate the minimum uncertainty in the determination of the energy of that excited state. (Given $\left.h=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)$
(c) In one dimension the wave function of a particle is represented by $\psi(x)=\sqrt{a} e^{-a x}$. What is the probability of finding the particle in the region between $x=\frac{1}{a}$ and $x=\frac{2}{a}$?
(d) What do you understand by quantum tunnelling? Mention one of its application.
(e) State the basic assumptions related to the single particle shell model of nucleus.
(f) Mention the different types of nuclear reactors. Why do we use a moderator in a nuclear reactor?
(g) What do you mean by 'induced or artificial radioactivity'?
(h) What does the acronym 'LASER' stand for? What are the 'metastable states'?

Group-B

2. Answer any two questions:
(a) (i) Find the probability current density associated with a plane wave $A e^{i k x}$ in one dimension and verify that it satisfies the equation of continuity in one dimension.
(ii) Find the probability current density for a real wave function.
$(2+2)+1$
(b) (i) Define the terms 'stopping potential $\left(V_{0}\right)$ ' and 'threshold frequency $\left(v_{0}\right)$ ' in the case of photo-electric effect.
(ii) Show that Planck's constant (h) has the dimension of angular momentum.

SH-IV/PHSH/CC-IX/23

(c) (i) Give the definition of 'binding energy $\left(E_{b}\right)$ ' of a nucleus.
(ii) ${ }_{2} \mathrm{He}^{4}$ nucleus has no magnetic moment. Explain.
(iii) A reactor is producing energy at the rate of 32×10^{6} watts. How many atoms of U-235 do undergo fission per second?
(Assume that on an average 200 MeV is released per fission.)
(d) What are Einstein coefficients? Derive the relation between them.

Group-C

3. Answer any two questions:
(a) (i) Deduce Planck's law of radiation.
(ii) A proton is confined to a nucleus of radius $5 \times 10^{-5} \mathrm{~m}$. Calculate the minimum uncertainty in its momentum and also calculate the minimum kinetic energy the proton should have. The proton mass is $1.67 \times 10^{-27} \mathrm{Kg}$. $\quad 6+4$
(b) (i) Establish the Geiger law $R \propto v^{3}$ for mono-energetic α-particles (the symbols have their
usual meanings).
(ii) What is Geiger-Nuttal law? State the importance of this law.
(iii) Using semi-empirical binding energy formula, calculate the binding energy of ${ }_{20} \mathrm{Ca}^{40}$.

$$
4+(1+1)+4
$$

(c) (i) A betatron working on an operating frequency of 60 Hz has a stable orbit of diameter 1.6 m . Find the energy gained per turn and also the final energy if the magnetic field at the orbit is 0.5 Tasla.
(ii) What is a nuclear reactor? What are the essential elements of a nuclear reactor?
(iii) Write down all possible conservation laws of nuclear reactions.
(d) (i) Discuss the significance of the results of Davisson-Germer experiment.
(ii) What are the different natural radioactive series?
(iii) Explain, in brief, the construction and working principle of (Pulsed) Ruby laser.

