B.Sc. 5th Semester (Honours) Examination, 2023 (CBCS) Subject : Chemistry Course : CC-XI (Inorganic Chemistry)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

2×5=10

5×2=10

- (a) State the conditions for orbital contribution to the magnetic moment.
- (b) What will be the increasing order of Δ_{3p} for complexes $[Ni(CN)_4]^{2-}$, $[Pd(CN)_4]^{2-}$ and $[Pt(CN)_4]^{2-}$? Given reason(s).
- (c) For which complex spin state equilibrium may occur $[Co(CN)_6]^{4-}$; $[CuCl_6]^{4-}$; $[Ni(CO)_4]$ and $[PtCl_4]^{2-}$? Give reason
- (d) Why do 4d and 5d metals form square planar complexes rather than tetrahedral complexes?
- (e) Write down general electronic configuration of transition elements and actinides. Hence indicate the effect of lanthanide type contraction in both cases.
- (f) Draw Orgel diagram of $d^7 O_h$ and $d^9 T_d$ complexes.
- (g) Why are compounds of lanthanides and actinides are coloured?
- (h) $(Co(H_2O_6)^{2+} \text{ forms } [CoCl_4]^{2-} \text{ but } [Ni(H_2O_6)^{2+} \text{ does not forms } [NiCl_4]^{2-}. Why?$
- 2. Answer any two questions:
 - (a) (i) 'Tetrahedral complexes are always high spin.' Explain.
 - (ii) 'Carbonyl' and 'Phosphine'— the bread and butter ligand for first transition series, are not good ligands for lanthanides.'— Explain.
 - (b) (i) Which will show greater Δ_0 value among the pairs and why? (A) $[Co(CN)_6]^{3-}$ and $[Co(CN)_6]^{4-}$ (B) $[Co(CN)_6]^{3-}$ and $[CoCl_6]^{3-}$.
 - (ii) Give example of one high spin square planar complex. Draw its structure and give its *d*-orbital splitting pattern. $(\frac{1}{2}+\frac{1}{2}+\frac{1}{2})+3$
 - (c) (i) Electronic configuration of Cu^+ and Cu^{2+} is [Ar] $3d^{10}$ and [Ar] $3d^9$, respectively. Through Cu^+ has filled valence shell but it is less stable than Cu^{2+} . —Why?
 - (ii) Why do transition elements show variable valency? $2\frac{1}{2}+2\frac{1}{2}$
 - (d) (i) Why are common oxidation state of 3d series metal ions (except Sc and Cu) +2?
 - (ii) Why are absorption band of lanthanides very sharp where as that of transition metal compounds broad?
 2¹/₂+2¹/₂

Please Turn Over

29616

SH-V/CEMH/CC-XI/23

- 3. Answer any two questions:
 - (a) (i) Why is the cause of Jahn-Teller distortion?
 - (ii) In octahedral geometry among Co²⁺ high spin or Co²⁺ low spin complex, which one will face more Jahn-Teller distortion?
 - (iii) Why Pt(II) and Pd(II), though symmetrically field, undergoes Jahn-Teller distortion?
 - (iv) Why does Cu(II) experience distortion even for weak field ligand but Ni(II) system experience it only with strong field ligand?
 - (v) Which type of distortion is preferred by Cu(II) complexes? Give reason. 2+2+2+2+2
 - (b) (i) Discuss the structure and bonding of [Cr(CH₃COO)₂]₂.2H₂O and [Cu(CH₃COO)₂]₂, 2H₂O. Also discuss their magnetic moment.
 - (ii) Why is separation of lanthanide ions a difficult task?
 - (iii) '2nd and 3rd row transition metals are very much close in their chemical properties' why? (1+1+1+1+1)+2+2
 - (c) (i) Draw the crystal field splitting pattern for d⁸ configuration in octahedral, tetrahedral and square planner electronic field.
 - (ii) Calculate CFSE in weak and strong crystal field for d^7 configuration in octahedral, tetrahedral and square planner electronic field. $(1\frac{1}{2}+1\frac{1}{2}+2)+(1\frac{1}{2}+1\frac{1}{2}+1+1)$
 - (d) (i) What is magnetically concentrated compound and magnetically dilute compound? Explain with example.
 - (ii) Explain quenching of magnetic moment with example.
 - (iii) What is super exchange phenomenon—state with example.
 - (iv) Give elementary idea on antiferromagnetism with example.

(2+2)+2+2+2

 $10 \times 2 = 20$