B.Sc. 5th Semester (Honours) Examination, 2023 (CBCS)

Subject : Chemistry

Course : CC-XII

(Organic Chemistry)
Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

1. Answer any five questions from the following:
(a) Draw the HOMO and LUMO of cyclopentadiene.
(b) What happens when naphthalene is subjected to ozonolysis? Give necessary reaction(s).
(c) Write down the product when pyrrole is treated with I_{2} in aqueous KI ?
(d) Ephedrine is lesser basic than ψ-ephedrine-Explain.
(e) Why are D-mannose and D-galactose not epimeric hexoses? Explain.
(f) Draw the structure of BOC-derivative of alanine.
(g) Mention the starting compounds for the synthesis of the following compound by Fischer-Indole synthesis.

(h) What is Sanger's reagent? Mention its use in protein chemistry.
2. Answer any two questions from the following:
(a) (i) Account for the following observation:

(ii) Using FMO approach explain how the following conversion can be carried out?

(b) (i) Convert:

(ii) Identify A to C in the following reaction scheme:

(c) (i) An aldohexose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ on reduction with $\mathrm{Na} / \mathrm{Hg}$ gives D-Sorbitol which on reaction with excess phenyl hydrazine forms an osazone which is different from the osazone of D -glucose. Write down the structure of the aldohexose explaining the reactions.
(ii) 'The rate of oxidation of β-D-glucose by $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ is faster than that of α-D-glucose' Explain.
(d) (i) What kind of stereoisomerism do you find in α-terpineol? How many stereoisomers are possible when Br_{2} adds to the double bond of α-terpineol?
(ii) How phenanthrene can be converted to phenanthrene-9-carboxylic acid?
(iii) What is the difference between 'nucleoside' and 'nucleotide'?
3. Answer any two questions from the following:
(a) (i) Optically active ' X ' racemises on heating at $50^{\circ} \mathrm{C}$ with a half life of 24 hours. Rationalise the observation.

(ii) Predict the product of the following reactions:

(iii) Identify D and E in the following reaction scheme:

(iv) Write down the products of the following reactions:

(b) (i) Write down a scheme for the synthesis of Gly-Ala using DCC promoted peptide bond formation.
(ii) Briefly discuss one important method for determining N -terminal residue in peptide chain.
(iii) What happens when alanine is heated with acetic anhydride in pyridine solvent? Give the mechanism involved.
(iv) Identify the product of hydramine fission on (-)-ephedrine.
(c) (i) Write down the product of the following reaction with proper mechanism:

(ii) Carry out the following conversions:
(I) Indole \rightarrow Quinoline
(II) Pyridine \rightarrow 4-Bromo pyridine
(iii) Show what happens when α-tetralone is heated with $1: 1$ mixture of $\mathrm{NaOH}-\mathrm{KOH}$ at $220^{\circ} \mathrm{C}$.
(d) (i) Suggest a scheme for stepping up of an aldose by two additional carbon atoms using Witting reaction in one of the steps involved.
(ii) How periodic acid $\left(\mathrm{HIO}_{4}\right)$ oxidation be used to distinguish between D -arabinose and D-glucose?
(iii) How the following conversion can be carried out?
(I) Methyl D-glucopyranoside \rightarrow Methyl D-glucofuranoside
(II) D-glucose \rightarrow 3-deoxy-D-glucose
(iv) Identify the product of the following reaction:

