B.A./B.Sc. 5th Semester (Honours) Examination, 2023 (CBCS)
 Subject : Mathematics

Course : BMH5CC12

(Mechanics-I)

Time: 3 Hours

Full Marks: 60

> The figures in the margin indicate full marks.
> Candidates are required to give their answers in their own words as far as practicable.

Notation and symbols bear usual meaning.

1. Answer any ten questions from the following:

$2 \times 10=20$
(a) Define astatic equilibrium for a system of coplanar forces.
(b) State the principle of virtual work for a particle.
(c) Obtain the centre of gravity of a semicircular arc revolving about the bounding diameter.
(d) Obtain the degree of freedom of a rigid body which is fixed in space at its any three non collinear points.
(e) Define Poinsot's central axis in a system of forces acting on a rigid body.
(f) A particle is executing Simple Harmonic Motion (S.H.M.) such that its period of oscillation is π seconds. If its maximum acceleration is $12 \mathrm{ft} / \mathrm{sec}^{2}$, find its amplitude.
(g) An insect crawls at a constant rate u along the spoke of a cartwheel of radius a. The cart is moving with velocity v. Calculate the acceleration along and perpendicular to the spoke. $1+1$
(h) Find the velocity of an artificial satellite of the earth, given $g=9 \cdot 8$ metres $/ \mathrm{sec}^{2}$, radius of the earth $=6.4 \times 10^{8}$ metres. (Assuming that the satellite is moving very close to the surface of the earth).
(i) If the path of a particle be a circle with radius a, find its radial and cross-radial accelerations.
(j) Prove that the particle moves at right angle to the radius vector at an apse.
(k) Prove that a planet has only a radial acceleration towards the Sun.
(l) If P, Q, R act along three non-intersecting edges of a cube, find the central axis.
(m) What is angular momentum? Using the concept of angular momentum prove the relation $h=v . p$, where the letters have their usual meaning.
(n) A particle is moving along the curve of an equiangular spiral under the force P to the pole. Find the law of force.
(o) What do you mean by constraint of a dynamical system? Give an example.
2. Answer any four questions from the following:
(a) (i) What is the coefficient of friction in motion of a body over the surface?
(ii) Show that for equilibrium, the resultant reaction can never make with the normal an angle greater than the angle of friction.
(b) A particle is projected from the earth's surface vertically upwards with a velocity v. If h and H are the greatest heights attained by the particle moving under uniform and variable acceleration respectively, show that $\frac{1}{h}-\frac{1}{H}=\frac{1}{R}$ where R is the radius of the earth.
(c) Obtain the components of velocity and acceleration of a particle along and perpendicular to the radius vector to it from a fixed origin.
(d) If a planet was suddenly stopped in its orbit, supposed circular, show that it will fall into the sun in a time which is $\frac{\sqrt{2}}{8}$ times the period of the planet's revolution.
(e) The length $A B$ and $C D$ of the sides of a rectangle $A B C D$ are $2 a$ and $2 b$; show that the inclination of one of the principal axes with $A B$ at A is $\frac{1}{2} \tan ^{-1}\left(\frac{3 a b}{2\left(a^{2}-b^{2}\right)}\right)$.
(f) A uniform rod is held at an inclination α to the horizon with one end in contact with a horizontal table whose coefficient of friction is μ. If it be then released, show that it will commence to slide if $\mu<\frac{3 \sin \alpha \cos \alpha}{1+3 \sin ^{2} \alpha}$.
3. Answer any two questions from the following:
(a) (i) A uniform chain of length l is to be suspended from two points A and B in the same horizontal line so that either terminal tension is n times of that at the lowest point. Show that the span $A B$ must be $\frac{l}{\sqrt{n^{2}-1}} \log _{e}\left(n+\sqrt{n^{2}-1}\right)$.
(ii) Show that the momental ellipsoid at the centre of an elliptic plate is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+z^{2}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)=$ constant.
(b) (i) A particle is projected with velocity u at an inclination α above the horizontal in a medium whose resistance per unit mass is k times the velocity. Show that its direction will again make an angle α below the horizontal after a time $\frac{1}{k} \log \left(1+\frac{2 k u}{g} \sin \alpha\right)$.
(ii) A particle moves in a straight line from rest under an attractive force (acceleration) $\mu \times(\text { distance })^{-2}$ directed towards a fixed point on the line, where μ is a constant. Show that if the initial distance is $2 a$, then the distance will be ' a ' after a time $\left(\frac{\pi}{2}+1\right)\left(\frac{a^{3}}{\mu}\right)^{\frac{1}{2}}$.
(c) (i) Three forces act along the straight lines $x=0, y-z=a ; y=0, z-x=a$; $z=0, x-y=a$. Show that they cannot reduce to a couple. Prove also that if the system reduces to a single force its line of action must lie in the surface $x^{2}+y^{2}+z^{2}-2 y z-2 z x-2 x y=a^{2}$.
(ii) A particle moves under a central acceleration $\frac{\mu}{r^{3}}$. It is projected from an apse at a distance a from the centre of force with a velocity equal to $\sqrt{2}$ times the velocity in a circle at the same distance, show that the path is $r \cos \left(\frac{1}{\sqrt{2}} \theta\right)=a$.
(d) (i) Define catenary of uniform strength and deduce its equation in cartesian form.
(ii) A heavy uniform rod $A B$ of length $2 a$, rests with its ends in contact with two smooth inclined plane of inclination α and β to the horizon. Prove by principle of virtual work that $\tan \theta=\frac{1}{2}(\cot \alpha-\cot \beta)$.

