SH-V/PHSH/CC-XII/23

B.Sc. 5th Semester (Honours) Examination, 2023 (CBCS)

Subject : Physics

Course : CC-XII

(Solid State Physics)

Time: 2 Hours

Full Marks: 40

 $2 \times 5 = 10$

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group-A

1. Answer any five questions:

- (a) In X-ray diffraction pattern, using X-rays of wavelength 1.54Å, three consecutive peaks of 1st order are observed at 2θ values of 60°, 90° and 112°. If the system is cubic and peak at 90° corresponds to (220) plane, calculate the lattice constant.
- (b) What is the phase velocity and group velocity of the wave motion along a one-dimensional lattice? What happens to the group velocity when $a = \pm \pi$?
- (c) What do you mean by 'effective mass' of an electron in a solid? Under what condition the effective mass of electron is equal to its free electron mass?
- (d) Explain 'isotope effect' in superconductivity. Briefly discuss its significance.
- (e) Define Néel Temperature. What are ferrites?
- (f) The distance between (110) planes in a BCC crystal is 2Å. Determine the atomic radius.
- (g) The relative permittivity and square of refractive index of a dielectric material are 4.94 and 2.69 respectively. Find the ratio between electronic and ionic polarizability of the material.
- (h) Resistivity of a intrinsic semiconductor is 4.5 Ωm at 20°C and 2 Ωm at 32°C. Find the band gap of the semiconductor.

Group-B

2. Answer any two questions:

- (a) (i) Calculate the Hall coefficient in a solid where both electrons and holes contribute to the Hall effect.
 - (ii) Show that at absolute zero, Fermi level lies exactly half way between the top of the valence band and the bottom of the conduction band.
 3+2

Please Turn Over

 $5 \times 2 = 10$

182

29601

- (b) The wavefunction of the hydrogen atom in the ground state is given by $\psi(r) = \frac{1}{(\pi a_0^3)^{\frac{1}{2}}} e^{-\frac{r}{a_0}}$. Show that $\langle r^2 \rangle = 3a^2$ and calculate the molar diamagnetic susceptibility of atomic hydrogen at STP, where a_0 = atomic radius = 0.46Å.
- (c) (i) The Bragg angle for first order reflection from (111) plane of a SC crystal is 60°. Calculate the interatomic spacing, if X-rays of wavelength 1.8Å is used.
 - (ii) Define geometrical structure factor. Derive an expression for the scattering amplitude in terms of geometrical structure factor. 2+3
- (d) (i) Show that in the Debye approximation the total zero point energy/gm-mole of solid is given by $\frac{9}{8}R \theta_D$.
 - (ii) Calculate atomic packing fraction of a crystal having FCC structure.

Group-C

3. Answer any two questions:

 $10 \times 2 = 20$

3+2

- (a) (i) Discuss the Weiss field theory of ferromagnetism and explain how magnetic susceptibility varies with temperature at Curie point and above Curie point.
 - (ii) The atomic radius of sodium is 1.86Å. Calculate the Fermi energy of sodium (BCC) at absolute zero.
- (b) (i) Derive the Meissner effect from the Second London equation, using the Maxwell's relation $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}_s$.
 - (ii) What is Cooper-pair? Find the wavelength of the photon that would break a Cooper-pair in a superconductor whose critical temperature is 1.2K.
- (c) (i) Derive the Langevin-Debye equation. How could this equation be used to obtain information regarding the molecular structure? Which materials exhibit orientational polarizability?
 - (ii) The dielectric constant of a helium gas at NTP is 1.0000684. Calculate the electron polarizability of helium atoms if the gas contains 2.7×10^{26} atoms/m³ and hence calculate the radius of helium atom. 6+(2+2)
- (d) (i) Derive vibrational modes of a diatomic linear lattice.
 - (ii) Name the different branches of the dispersion relation curve. What is the difference between the two branches?
 6+(1+3)