B.Sc. 5th Semester (Honours) Examination, 2023 (CBCS)
 Subject : Physics
 Course : DSE-1
 (Advanced Mathematical Physics)

Time: 2 Hours

> The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Full Marks: 40

1. Answer any five questions:
(a) For two matrices A and B, if $A B=B A$, show that $(A B)^{n}=A^{n} B^{n}$.
(b) Prove that Anti-Hermitian matrices have pure imaginary or zero eigenvalues.
(c) State the Cayley-Hamilton theorem for square matrix.
(d) Find a vector parallel to $x y$-plane and perpendicular to $4 \hat{\imath}-3 \hat{\jmath}+\hat{k}$.
(e) Give two examples of physical quantities which are Tensor of Rank 1 and Tensor of Rank 2.
(f) Obtain the metric tensor $g_{i j}$ for two-dimensional plane polar coordinates.
(g) Express the components of a cross-product vector $\vec{C}=\vec{A} \times \vec{B}$ in terms of $\epsilon_{i j k}$ and the components of \vec{A} and \vec{B}.
(h) Expand the term of Tensor $S=a_{m n} x^{m} x^{n}$, taking ($m, n=1,2,3$)
2. Answer any two questions:
(a) Let (x, y) denote coordinates in a rectangular Cartesian coordinate syster $5 \times 2=10$ denote coordinates in coordinate systems S^{\prime}, related by the equations systems S and $\left(x^{\prime}, y^{\prime}\right)$

$$
\begin{gathered}
x^{\prime}=2 x+3 y \\
y^{\prime}=-3 x+4 y
\end{gathered}
$$

$y^{\prime}=-3 x+4 y$.
Then find the area element in S^{\prime} system which was $d x d y$ in S frame. not. Here $P=(I-i H)(I+i H)^{-1}$
(c) Prove that there is no distribution between contravariant and covariant vectors if the
transformation law is of the form

$$
\bar{x}^{i}=a_{m}^{i} x^{m}+b^{i}
$$

Given all the a 's and b 's are constants such that $a_{r}^{i} a_{m}^{i}=\delta_{m}^{r}$.
(d) Given $A_{k}=\frac{1}{2} \epsilon_{i j k} B^{i j}$ with $B^{i j}$ anti-symmetric. Then show that $B^{m n}=\epsilon^{m n k} A_{k}$.
3. Answer any two questions:
(a) Let us consider a vector space defined by two orthogonal vectors $\vec{g}=\binom{0}{1}$ and $\vec{e}=\binom{1}{0}$. There are two matrices σ^{+}and σ^{-}which acts on these vectors obeying the following rules:

$$
\sigma^{+} \vec{g}=\vec{e}, \quad \sigma^{+} \vec{e}=0, \quad \sigma^{-} \vec{e}=\vec{g}, \quad \sigma^{-} \vec{g}=0
$$

Find the 2×2 matrix form of these matrix-operators σ^{+}and σ^{-}. Find the eigenvalues of a new matrix σ^{z} which is defined as $\sigma^{z}=\sigma^{+} \sigma^{-}-\sigma^{-} \sigma^{+}$.
(b) Find the eigenvalues and normalized eigenvectors of the matrix $B=\left(\begin{array}{lll}1 & 0 & 3 \\ 3 & 1 & 3 \\ 6 & 0 & 4\end{array}\right)$.

Now use the normalized eigenvectors to construct a unitary matrix and show that this matrix diagonalises the matrix B.
(c) How do you define inner product of two tensors? Let $A_{r s t}^{p q}$ be a tensor; choose $p=t$ and $q=s$ and show that $A_{r q p}^{p q}$ is also a tensor. What is its rank?
$2+6+2$
(d) In Minkowski space we define $x_{1}=x, x_{2}=y, x_{3}=z$ and $x_{0}=c t$. This is done so that the space time interval can be defined as $d s^{2}=d x_{0}^{2}-d x_{1}^{2}-d x_{2}^{2}-d x_{3}^{2}$, here c is speed of light. Show that the metric in Minkowski space is

$$
g_{i j}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) .
$$

