B.Sc. 6th Semester (Honours) Examination, 2023 (CBCS)
 Subject : Chemistry
 Course : CC-XIV

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is more active than $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in coagulating a sol.
(b) For the non-dissociative Langmuir type adsorption of a gas on solid surface at a particular temperature, the fraction of surface coverage is 0.6 at 30 bar. Calculate the Langmuir isotherm constant.
(c) Low temperature and viscous medium are suitable for observing phosphorescence.Explain.
(d) A liquid of density ρ and surface tension T rises to a height h in a capillary tube of diameter D. What is the weight of the liquid in the capillary tube? Angle of contact is 0°.
(e) Mention the differences of overtones and hot bands in the IR spectra.
(f) What magnetic field is required for proton magnetic resonance at 220 MHz . [Given, $\mathrm{g}=5 \cdot 585$]
(g) A 0.01 M solution of a compound transmits 20% of visible light when the absorbing path length is 1.5 cm . What is the molar extinction coefficient of the substance?
(h) What are Stokes and Anti-Stokes lines in the Raman spectra?
2. Answer any two questions from the following: $5 \times 2=10$
(a) (i) "The chemisorption of $\mathrm{H}_{2}(\mathrm{~g})$ onto glass is endothermic ($\Delta \mathrm{H}$ is slightly positive)"Comment.
(ii) Derive an expression for the excess pressure inside a spherical soap bubble.
(b) (i) Show that $J_{\max }=\sqrt{\frac{K T}{2 B h c}}-1 / 2$ corresponding to maximum population of molecules in rotational spectra.
(ii) Absorption and fluorescence spectra hold mirror image relationship.-Comment. $3+2$

SH-VI/CEMH/CC-XIV/23

(c) (i) The mechanism of quenching of fluorescence is

$$
\begin{aligned}
& A+h \nu \longrightarrow A^{*} I_{a} \\
& A^{*}+Q \xrightarrow{K_{q}} A+Q \\
& A^{*} \xrightarrow{K_{f}} A+h v_{f}
\end{aligned}
$$

where I_{a} is the amount of exciting radiation absorbed per litre of solution per second, K_{q} is the rate constant for quenching, K_{f} is the rate constant for fluorescence and I_{f} is the amount of fluorescence radiation per litre per second. Formulate Stern-Volmer relation $\frac{1}{I_{f}}=\frac{1}{I_{a}}\left[1+\left(\frac{K_{q}}{K_{f}}\right)[Q]\right]$. How the data should be plotted to determine the rate constant for quenching?
(ii) Why the term ± 2 appears in the selection rule of pure rotational Raman transitions? 3+2
(d) (i) For a soap solution $\gamma=\gamma_{0}-b c$. Derive the corresponding equation of state of the adsorbed film by assuming Gibbs adsorption isotherm.
(ii) If the $J=2$ to $J=3$ rotational transition for a heteronuclear diatomic molecule occurs at $\lambda=20 \mathrm{~mm}$, find the wavenumber for transition from $J=5$ to $J=6$ level in the same molecule.
$2 \cdot 5+2 \cdot 5$
3. Answer any two questions from the following:
(a) (i) 1000 droplets of water having 2 mm diameter each coalesce to form a single drop. Surface tension of water is $0.072 \mathrm{Nm}^{-1}$. Calculate the energy loss in the process.
(ii) Explain the basis of Franck-Condon principle. Explain why a photostationary state cannot be considered as an equilibrium state.
(iii) What is nuclear magneton? Show the splitting pattern in high resolution ${ }^{1}$ H NMR spectrum of Ethanol molecule.
(b) (i) If H_{2} molecule behaves like a harmonic oscillator with a force constant $K=573 \mathrm{~N} / \mathrm{m}$, Calculate the vibrational quantum number corresponding to its 4.5 eV dissociation energy. [Given, $\mathrm{M}_{\mathrm{H}}=1.67 \times 10^{-27} \mathrm{~kg}$]
(ii) Write down the expression for the work of adhesion when a liquid spreads over a solid surface. Write down the effect of micelle formation over electrical conductivity and osmotic pressure.
(iii) Show that the lines in rotational spectrum of a diatomic molecule are equispaced under rigid rotor approximation.
(c) (i) "The nature of Raman spectrum of a substance depends on both the nature of molecules and the wavelength of incident radiation" - Justify or criticize.
(ii) In photobromination of cinnamic acid, radiation at 435.8 nm with an intersity of $1.4 \times 10^{-3} \mathrm{Js}^{-1}, 80 \cdot 1 \%$ was adsorbed in a litre of solution during an exposure of 1150 s . The concentration of Br_{2} decreased by $7.5 \times 10^{-2} \mathrm{~mol} \mathrm{~m}^{-3}$ during this period. What is the quantum yield?
(iii) The morse potential is given by the expression $(r)=D_{e}\left[1-\exp \left\{-b\left(r-r_{e}\right)\right\}\right]^{2}$. Show that for small displacement from equilibrium position, the above expression is approximated by a simple harmonic potential.
(iv) How many normal modes of vibration are there for benzene molecule?
(d) (i) Benzene adsorbed on graphite is found to obey the Langmuir adsorption isotherm. At a pressure of 1.00 torr, the volume of benzene adsorbed on a sample of graphite was found to be $4.2 \mathrm{~mm}^{3}$ at STP $\left(0^{\circ} \mathrm{C}\right.$ and 1 atm pressure); at 3.00 torr it was calculated to be $8.5 \mathrm{~mm}^{3}$. Assuming that benzene molecule occupies $30 \AA^{2}$ surface area, estimate the total surface area of graphite.
(ii) Define gold number. Mention the conditions of observing Tyndall effect in colloidal solution.
(iii) Explain how a lyophilic colloid helps in stabilizing a lyophobic colloid. $4+(2+2)+2$

