B.A./B.Sc. 6th Semester (Honours) Examination, 2023 (CBCS) Subject : Mathematics
 Course : BMH6CC-XIII

Time: 3 Hours
Full Marks: 60
The figures in the margin indicate full marks.

> Candidates are required to give their answers in their own words as far as practicable.

Notation and symbols have their usual meaning.

1. Answer any ten questions:
(a) Let $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\} \cup\{(x, 0): 1<x<2\}$. Examine whether S is connected in \mathbb{R}^{2} with its usual metric.
(b) Examine whether the set $\left\{(x, y) \in \mathbb{R}^{2}: 0<x<1 ; x\right.$ is rational; $\left.x=y\right\}$ is complete in \mathbb{R}^{2} with its usual metric.
(c) Using the definition of compactness, prove that the open interval $(1,2)$ is not compact in \mathbb{R}.
(d) If f is a real valued function on $X=\left[0, \frac{1}{3}\right]$ with usual metric, defined by $f(x)=x^{2}$, then show that f is a contraction mapping on X.
(e) Give an example to show that the continuous image of a Cauchy sequence need not be a Cauchy sequence.
(f) Prove that a contraction mapping $T:(X, d) \rightarrow(X, d)$ is uniformly continuous.
(g) Let $f: X \rightarrow \mathbb{R}$ be a non-constant continuous function, where (X, d) is connected. Prove that $f(X)$ is uncountable.
(h) Evaluate $\int_{C} \frac{d z}{z}$, where C is the unit circle $|z|=1$.
(i) Define $\sin z$ and prove that $\frac{d}{d z}(\sin z)=\cos z$.
(j) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{-n}}{1+i n^{2}} z^{n}$.
(k) Let f be analytic in a connected domain $D \subset \mathbb{C}$ and $f^{\prime}(z)=0 \forall z \in \mathrm{D}$. Prove that f is constant on D.
(1) Prove that $f(z)=\bar{z}$ is not differentiable at any point of \mathbb{C}.
(m) Prove that $f(z)=\left\{\begin{array}{ll}\frac{z R e(z)}{|z|}, & z \neq 0 \\ 0, & z=0\end{array}\right.$ is continuous at $z=0$.
(n) Show that $\int_{C} f(z) d z=0$, where C is the unit circle $|z|=1$ in the positive direction and $f(z)=\frac{z^{2}}{z-6}$.
(o) Find the maximum modulus of $f(z)=2 z+5 i$ on the closed region: $|z| \leq 2$.
2. Answer any four of the following:
(a) Let $f:\left(X, d_{1}\right) \rightarrow\left(Y, d_{2}\right)$ be a function, then show that f is continuous if and only if $f^{-1}(G)$ is open in (X, d_{1}) whenever G is open in $\left(Y, d_{2}\right)$.
(b) Show that continuous image of a connected subset in domain space is connected in range space.
(c) Let A and B be two nonempty subsets of a metric space (X, d), where B is compact. Prove that $d(A, B)=0$ if and only if $\bar{A} \cap B \neq \phi$.
(d) Let $f: G \rightarrow \mathbb{C}$ be an analytic function on region G such that $|f(z)|$ is constant on G. Show that f is constant on G.
(e) If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ and $f(z)=u+i v$ is an analytic function of $z=x+i y$, find $f(z)$ in terms of z.
(f) Evaluate $\int_{C} f(z) d z$ where C is the positively oriented circle $C:|z-i|=2$ and $f(z)$ are the following:
(i) $f(z)=\frac{1}{z^{2}+4}$
(ii) $f(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$
3. Answer any two questions:
(a) (i) Define a Lebesgue number. Prove that in a sequentially compact metric space, every open cover has a Lebesgue number.
(ii) Let A be a compact set of diameter $\delta(A)$. Prove that there exist a pair of points $x, y \in A$ such that $\delta(A)=d(x, y)$. Is compactness of A necessary to hold the above result? Justify your answer.
$(1+4)+(4+1)$
(b) (i) Show that the unit sphere $S=\left\{x=\left\{x_{n}\right\} \in l_{2}: \sum_{n=1}^{\infty} x_{n}^{2} \leq 1\right\}$ is not compact.
(ii) Show that the function $f(z)=e^{-z^{-4}}(z \neq 0)$ and $f(0)=0$ is not analytic at $z=0$, although Cauchy-Riemann equations are satisfied at the point.

5+5
(c) (i) Let $f(z)$ be an entire function. If real part of $f(z)$ is bounded, prove that $f(z)$ is constant.
(ii) State and prove 'Banach Fixed Point Theorem'.
(d) (i) If $p(z)$ be a non-constant polynomial of degree n, then show that there is a complex number α satisfying $p(\alpha)=0$.
(ii) Evaluate

$$
\oint_{C} \frac{d z}{z(z+\Pi i)}
$$

where C is equal to $\{z:|z+3 i|=1\}$.

