B.Sc. 3rd Semester (Honours) Examination, 2019 (CBCS) Subject : Chemistry

Paper : CC-6

15-1

Time: 2 Hours

Full Marks: 40

2×5=10

5×2=10

2+3=5

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any five questions from the following:
 - (a) Glycerol is more viscous liquid than ethanol. Justify.
 - (b) Calculate the activity of 20.6g of ${}^{99m}_{Tc}.(t_{1/2} = 6.01h)$
 - (c) Which has the higher boiling point— CCl₄ or SiCl₄? Explain.
 - (d) What is Madelung constant? State its significance.
 - (e) 'Metals are good conductors of electricity'. Comment.
 - (f) Though LiCl and MgS have similar structure and nearly the same internuclear distance yet MgS is harder than LiCl. Explain.
 - (g) Explain why packing fraction may be positive or negative whereas mass defect is not.
 - (h) BeCl₂ has zero dipole moment while H₂S has some value of dipole moment. Explain.

2. Answer *any two* questions from the following:

- (a) (i) Why are Li₂ CO₃, MgCO₃ and CaCO₃ thermally unstable?
 - (ii) Explain the respective mode of decay of the radionuclide ${}^{14}_{6}C$ and ${}^{13}_{7}N$ with equations.
- (b) (i) Discuss the kind of defect observed in the crystal structure of ZnO when heated. What is the consequence of heating?
 - (ii) Write the expression for Kapustinskii equation and state its merit. 2+3=5
- (c) (i) Give the molecular orbital picture of CN⁻ ion and calculate its bond order.
 - (ii) Give any two differences between extrinsic and intrinsic semiconductor. 3+2=5
- (d) (i) Write down two assumptions of liquid drop model.
 - (ii) 0.5gm^{226} Ra is placed in a sealed tube. How much He (in ml) will be accumulated in 60 days ($t_{1/2} = 1580$ years) at NTP? 2+3=5

Please Turn Over

0264

18169

SH-III/Chemistry-CC-6/19

- 3. Answer any two questions from the following:
 - (a) (i) Define Born-Haber Cycle. Give a schemetic diagram of Born-Haber Cycle for the formation of ionic solid MX₂. State its limitation.
 - (ii) What shapes are associated with molecules involving sp^3d and sp^3d^2 hybridisation? Which d-orbitals are specifically required for each set of sp^3d and sp^3d^2 hybridisations?
 - (iii) Write down the shapes if SOF_4 and SiF_6^{2-} using VSEPR theory. 4+3+3=10
 - (b) (i) Use Fajan's rules to predict which is likely to be ionic or covalent: RbCl and AgCl.
 - (ii) Write notes on delta bond.
 - (iii) Predict the angle $\langle X C X$ trend in CH_2X_2 when X = H, F.
 - (iv) Calculate the radius of an octahedral void created by the atoms of radius r in fcc lattice. 2+3+3+2=10
 - (c) (i) A fusion reaction is called a thermonuclear reaction Why? How does it work in a hydrogen bomb?
 - (ii) Justify the statement there is a basic difference between nuclear spallation and nuclear fission reactions.
 - (iii) Meson exchange processes are limited within nuclear dimension. Justify. 4+3+3=10
 - (d) (i) Define nuclear isomerism and state its cause.
 - (ii) Calculate the binding energy per nucleon in MeV of ${}_{2}^{4}$ He which has a mass of 4.00260 amu Mass of neutron = 1.008665 amu and 1 hydrogen atom = 1.007825 amu.
 - (iii) Explain the exceptional stability of ${}_{2}^{4}$ He, ${}_{6}^{12}$ C and ${}_{8}^{16}$ O nuclides.
 - (iv) The radius of ${}^{107}_{47}$ Ag is 6.7 fermi. Calculate the density of the nucleus in gm/cm³.

2+3+3+2=10