B.Sc. 5th Semester (Honours) Examination, 2019 (CBCS)

Subject: Chemistry

Paper: CC-11

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

1. Answer *any five* questions:

 $2 \times 5 = 10$

- (a) Exemplify the terms: magnetically dilute and magnetically concentrated substances.
- (b) $U0_2^{2+}$ ion predominates the chemistry of uranium (VI) Why?
- (c) State the selection rules in electronic spectroscopy.
- (d) State the conditions for orbital contribution to the magnetic moment.
- (e) What do you mean by Spin Cross-Over (SCO)? Give an example of a co-ordination compound showing this bi-stability.
- (f) Why do 4d and 5d metals form square planar complexes but not tetrahedral complexes?
- (g) Identify the products:
 - (i) Th $(NO_3)_4 \xrightarrow{H_2C_2O_4}$
 - (ii) $U_3O_8 \xrightarrow{\text{conc.HNO}_3}$
- (h) Pick up the ions from the following list that have same colours. Indicate the reason for such similarity. Pm^{3+} , Sm^{3+} , Ho^{3+} , Dy^{3+}
- 2. Answer any two questions:

 $5 \times 2 = 10$

- (a) (i) State the reason between the following:
 - * Gold being a metal forms auride (Au⁻) ion.
 - * Osmium and iridium are the densiest among metals.
 - (ii) " Ce^{4+} is an oxidant whereas Sm^{3+} is a reductant" Explain.

(1.5+1.5)+2=5

- (b) (i) Predict and explain the relative position of fluoride, iodide ions and water in the spectrochemical series and nephelauxetic series.
 - (ii) "Complexes of Cu^{2+} usually depart considerably from octahedral geometry". Comment. 3+2=5
- (c) (i) Sm (III) and Eu (III) shows exceptional magnetic behaviour with respect to other trivalent lanthanide cations. Explain.
 - (ii) Molar susceptibility ($\chi_{\rm M}^{\rm corrected}$) value for a complex has been reported as $1.11 \times 10^{-2}~{\rm cm^3~mol^{-1}}$ at 293 K. Calculate the number of unpaired electrons in the corresponding metal ion. [Assume that $\mu_{\rm eff} = \mu_{\rm spin}$ only] 3+2=5
- (d) (i) Both [Fe(bpy)₃]²⁺ and [FeO₄]²⁻ ions are colour. State the origin of colour in these two ions.

19064

Please Turn Over

(ii) "X and Y are the two complexes of nickel (II) — one of which with tetrahedral and the other with octahedral structures. The intensity in colour of Y is greater than that of X". Guess the geometry of each one from such spectral findings. Measurement of which physicochemical property would exclude the possibility of either complex being square planar?
2+3=5

3. Answer any two questions:

 $10 \times 2 = 20$

- (a) (i) Comment on the stoichiometry, colour and magnetic behaviour of the products when anhydrous manganous iodide is treated with alkyl isocyanide in alcoholic medium.
 - (ii) Work out the spin only magnetic moment values of K₃[CoF₆] adn K₂[NiF₆].
 - (iii) Note down the postulates of Crystal Field Theory on metal-ligand bonding.
 - (iv) Depict the structure of Cr (II) acetate dihydrate. Also Comment on its magnetic moment. 3+2+3+2=10
- (b) (i) Write the concise account of the principles and ion exchange separation method of lanthanoid ions.
 - (ii) Portray the Orgel combined energy level diagram for d^n (Octahedral and tetrahedral) configuration. (n = 1, 4, 6, 9). $(2+2)+(1.5\times4)=10$
- (c) (i) State the SI units of the following:
 - * magnetic pole strength
 - * magnetic moment
 - * magnetic permeability
 - * molar susceptibility
 - (ii) Outline the preparatory procedure of the following (balanced equation is not required)
 - * Millon's base
 - * Purple of Cassius
 - * Wolfram's red
 - (iii) Cite an example of super-exchanged pathway with respect to a coordination molecule. What is the net effect? $(\frac{1}{2}\times 4)+(2\times 3)+2=10$
- (d) (i) Identify the following:

*
$$K_2[PtCl_4] + H_2C = CH_2 \xrightarrow{dil.HCl} A$$

* $NH_4VO_3 \xrightarrow{\Delta} B$

* $TiCl_4 \xrightarrow{NaC_5 H_5 \text{ (excess)}} C$

* $Na_2[Fe(CN)_5 \text{ (NO)}] \xrightarrow{NaOH} D$

- (ii) Show the pattern of splitting of d-orbitals in crystal field mention the relation of 10Dq in cubic crystal field with tetrahedral and octahedral crystal field.
- (iii) Write relevant chemical equations in connection with van Arkel-de Boer process.

 $(1\times4)+4+2=10$