B.A./B.Sc. 3rd Semester (Honours) Examination, 2019 (CBCS)

Subject : Mathematics

Paper : BMH3 CC-05

Time: 3 Hours

Full Marks: 60

 $2 \times 10 = 20$

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

(Notations and Symbols have their usual meaning.)

Group A

- 1. Answer any ten questions:
 - (a) Prove that $\lim_{x\to 0} \cos \frac{1}{x}$ does not exist.
 - (b) Let I be an interval and $f: I \to \mathbb{R}$ be continuous on I. Then prove that f(I) is an interval.
 - (c) Prove that $f(x) = \sin \frac{1}{x}, x \in (0, 1)$ is not uniformly continuous on (0, 1).
 - (d) Let f: R → R be differentiable at c ∈ R and f(c) = 0. Let g(x) = |f(x)|, x ∈ R. Show that g is differentiable at c if and only if f'(c) = 0.
 - (e) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

 $f(x) = x^2 sin \frac{1}{x}$ for $x \neq 0$

= 0, for x = 0

Show that f is differentiable on \mathbb{R} but f' is not continuous on \mathbb{R} .

- (f) If p(x) is a polynomial of degree > 1 and $k \in \mathbb{R}$, prove that between any two real roots of p(x) there is a real root of p'(x) + kp(x) = 0.
- (g) If x, y, x'and y' are elements in a metric space (X, d), show that $|d(x, y) - d(x', y')| \le d(x, x') + d(y, y')$.
- (h) Is L' Hospital's rule applicable to find $\lim_{x\to 0} \frac{\sin x}{x}$? Justify.
- (i) Prove that the equation $x = \cos x$ has a root $in\left(0, \frac{\pi}{2}\right)$.
- (j) Give example with proper justification, of two discontinuous functions whose product is a continuous function.

Please Turn Over

0569

18235

ASH-III/BMH3CC-05/19

- (k) Show that f(x) = [x] in [0, 1] is not the derivative of any function, [x] being the largest integer not larger than x.
- (1) Give the geometrical significance of Cauchy's Mean Value Theorem.
- (m) Prove or disprove : Every subset in a discrete metric space in closed.
- (n) Let $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by $d(x, y) = |x^3 y^3|, \forall x, y \in \mathbb{R}$. Is 'd' a metric on \mathbb{R} ? Support your answer.
- (o) Let $S = \{(x, y): 0 < x < \frac{2\pi}{3}; y = \sin x\}$. Find the diameter of S on \mathbb{R}^2 .

Group B

- Answer any four questions: 2.
 - (a) (i) A function $f:[0,1] \to \mathbb{R}$ be defined by

f(x) = x, x is rational in [0, 1],

$$= 1 - x$$
, x is irrational in [0, 1].

Show that f is continuous at $\frac{1}{2}$ and discontinuous at every other point in [0, 1].

- (ii) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} . Prove that $f^{-1}(G)$ is open in \mathbb{R} for every open subset (1+2)+2=5G of \mathbb{R} .
- (b) (i) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. If f''(x) > 0 for all $x \in \mathbb{R}$, then show that $f\left(\frac{x_1+x_2}{2}\right) \le \frac{1}{2}[f(x_1)+f(x_2)].$

(ii) If f(x) is defined in [0, 1] such that $f(0) = \frac{1}{2}$. Also if f is continuous and takes up only rational values, then show that $f(x) = \frac{1}{2}$ for all $x \in [0, 1]$. 3+2=5

- (c) State and prove Taylor's Theorem with Cauchy's form of remainder. 1+4=5
- (d) Prove that every continuous function on a closed and bounded interval is uniformly 5 continuous.
- (e) State and prove Darboux theorem concerning derivative.
- (f) Let (X, d) be a metric space. Define a closed set in (X, d). Prove that arbitrary intersection of closed sets in (X, d) is a closed set. Is arbitrary union of closed sets in a metric space 1+2+2=5closed? Support your answer.

Group C

- Answer any two questions: 3.
 - (a) (i) Let c[a, b] be the set of all real valued continuous functions on [a, b] and d be a metric

on c[a, b] defined by $d(f, g) = \frac{\sup}{a \le x \le b} |f(x) - g(x)|$ for all $f, g \in c[a, b]$. Show that the set $\{f \in c[a,b]: \frac{\inf f(x)}{a \le x \le b} > 0\}$ is an open set in c[a,b] with respect to the metric d.

 $10 \times 2 = 20$

5×4=20

1+4=5

ASH-III/BMH3CC-05/19

- (ii) Use Mean Value Theorem to prove $0 < \frac{1}{x} \log\left(\frac{e^x 1}{x}\right) < 1$, for x > 0.
- (iii) Show that the function defined on(-1,2) by $f(x) = \begin{cases} x & \text{, when } -1 < x < 1 \\ x 2 & \text{, when } 1 \le x < 2 \\ 4+3+3=10 \end{cases}$
- (b) (i) If ρ_1 and ρ_2 be the radii of curvature at the extremities of any chord of the cardiode $r = a(1 + \cos\theta)$, which passes through the pole, then prove that $\rho_1^2 + \rho_2^2 = \frac{16}{9}a^2$.
 - (ii) Find the equation of the circle of curvature of 2xy + x + y = 4 at the point (1, 1). 5+5=10
- (c) (i) Show that the metric space l^p , $1 \le p < \infty$ is separable.
 - (ii) If f(x + y) = f(x) + f(y) for all $x, y \in \mathbb{R}$ and f be continuous at a point of \mathbb{R} ; then prove that f is uniformly continuous on \mathbb{R} .
 - (iii) If $f(x) = \sin x$ prove that $\lim_{h \to 0} \theta = \frac{1}{\sqrt{3}}$, where θ is given by

$$f(h) = f(0) + hf'(\theta h), 0 < \theta < 1.$$

$$4+3+3=10$$

- (d) (i) Let D ⊂ ℝ and f : D → ℝ be a function. Let c ∈ D ∩ D'. Then prove that f is continuous at c if and only if for every sequence {x_n} in D converging to c, the sequence {f(x_n)} converges to f(c).
 - (ii) Let *I* be an interval in \mathbb{R} and $f: I \to \mathbb{R}$ be a function. Let f'' exist in *I*. Then prove that f is convex in *I* if and only if f'' is non-negative in *I*. 5+5=10

(3)